Atomic force and scanning tunneling microscopy of ordered ionic liquid wetting layers from 110 K up to room temperature

M. Meusel, M. Lexow, A. Gezmis, S. Schötz, M. Wagner, A. Bayer, F. Maier, H.-P. Steinrück

Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
Institut für Angewandte Physik, TU Wien, 1040 Wien, Austria

ACS Nano 14 (2020) 9000-9010

Ionic liquids (ILs) are used as ultrathin films in many applications. We studied the nanoscale arrangement within the first layer of 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C1C1Im] [Tf2N]) on Au(111) between 400 and 110 K in ultrahigh vacuum by scanning tunneling and noncontact atomic force microscopy with molecular resolution. Compared to earlier studies on similar ILs, a different behavior is observed, which we attribute to the small size and symmetrical shape of the cation: (a) In both AFM and STM only the anions are imaged; (b) only long-range-ordered but no amorphous phases are observed; (c) the hexagonal room-temperature phase melts 30-50 K above the IL's bulk melting point; (d) at 110 K, striped and hexagonal superstructures with two and three ion pairs per unit cell, respectively, are found. AFM turned out to be more stable at higher temperature, while STM revealed more details at low temperature.

Corresponding author: Hans-Peter Steinrück. Reprints also available from Margareta Wagner (wagner at iap_tuwien_ac_at).

You can download a PDF file of this open-access article from ACS Nano or from the IAP/TU Wien web server.