

INSTITUT FÜR ANGEWANDTE PHYSIK Institute of Applied Physics vormals/formerly Institut für Allgemeine Physik

Wiedner Hauptstraße 8-10/E134, 1040 Wien/Vienna, Austria – Tel: +43 1 58801 13401 / Fax: +43 1 58801 13499 – E-mail: office@iap.tuwien.ac.at / http://www.iap.tuwien.ac.at

IAP-SEMINAR

ANNOUNCEMENT

Date: Time: Location:	Tuesday, 13.12.2016 16:00 s.t. Technische Universität Wien, Institut für Angewandte Physik, E134 yellow tower "B", 5 th floor, Sem.R. DB gelb 05 B (room number DB05L03), 1040 Wien, Wiedner Hauptstraße 8-10
Lecturer:	Ao.Univ.Prof. Dr. Svetlozar Surnev Surface and Interface Physics Division, Karl-Franzens-Universität Graz
Subject:	Ternary oxides at the two-dimensional limit: Metal-Tungstate Nanolayers on Metal Surfaces
Abstract:	Metal tungstates with the general formula MWO ₄ (M denotes a bivalent metal cation) belong to a fascinating family of inorganic functional materials possessing a high application potential in various fields, such as in photoluminescence, photoanodes, electrochromic systems, humidity sensors, magnetic properties and catalysis. Metal tungstate compounds have been synthesized mostly in bulk form, but with the advance of nanotechnologies there is a growing interest in preparing MWO ₄ structures at the nanoscale, whose physical and chemical properties are unexplored as yet. I will show that two-dimensional (2-D) ternary oxide MWO _x nanolayers can be fabricated in a well-ordered manner on single crystal metal surfaces using different epitaxial growth routes based on a solid-state chemical reaction in two dimensions. One preparation approach involves the interfacial reaction of (WO ₃) ₃ clusters, generated by thermal sublimation of WO ₃ powder, with native surface oxide phases on Cu(110) and Ni(110) surfaces. As a highlight, the formation of a 2-D CuWO ₄ layer on Cu(110) will be presented and its novel structural, electronic, vibrational and chemical properties will be discussed. A second synthesis route consists of the formation of structurally well-defined 2-D oxide layers on foreign metal substrates, such as e.g. FeO on Pt(111), onto which the (WO ₃) ₃ clusters were deposited and reacted after annealing to elevated temperatures. This procedure results in the epitaxial growth of a honeycomb (2x2)-FeWO ₃ layer on Pt(111). It consists of a mixed Fe ²⁺ /W ⁴⁺ layer, which is terminated by oxygen atoms in Fe-W bridging positions, forming a buckled honeycomb lattice. DFT calculations predict that the 2-D FeWO ₃ layer exhibits a ferromagnetic order with a Curie temperature of 95 K, as opposed to the antiferromagnetic behavior in the bulk FeWO ₄ phase. At the end of my talk, the formation of hexagonally-ordered 2-D MnWO ₄ and NiWO ₄ layers on Pd(100) will be briefly discussed. Here, in contrast to the previo

All interested colleagues are welcome to this seminar lecture (45 minutes presentation followed by discussion).

U. Diebold e.h. (Seminar-Chairperson) F. Aumayr e.h. (LVA-Leiter)