Nickel oxide (NiO), deposited onto the strontium titanate (SrTiO3) (110)-(4 × 1) surface, was studied using photoemission spectroscopy (PES), X-ray absorption near edge structure (XANES), and low-energy He+ ion scattering (LEIS), as well as scanning tunneling microscopy (STM). The main motivation for studying this system comes from the prominent role it plays in photocatalysis. The (4 × 1) reconstructed SrTiO3(110) surface was previously found to be remarkably inert toward water adsorption under ultrahigh-vacuum conditions. Nickel oxide grows on this surface as patches without any apparent ordered structure. PES and LEIS reveal an upward band bending, a reduction of the band gap, and reactivity toward water adsorption upon deposition of NiO. Spectroscopic results are discussed with respect to the enhanced reactivity toward water of the NiO-loaded surface.
Corresponding author: Ulrike Diebold (diebold).
You can download a PDF file of this open-access article from The Journal of Physical Chemistry C or from the IAP/TU Wien web server.