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Every body continues in its state of rest or of uniform motion in a
straight line except insofar as it is compelled to change that state by an
external impressed force

The rate of change of momentum of the body is proportional to the
impressed force and takes place in the direction in which the force acts.

To every action there is an equal and opposite reaction




Every particle of matter attracts every other particle of matter with a force
directly proportional to the product of the masses and inversely
proportional to the square of the distance between them.
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The planets move in ellipses with the sun at one focus

Areas swept out by the radius vector from the sun to a planet in equal
times are equal

The square of the period of revolution is proportional to the cube of the
semimajor axis.
That is, T? = const x a®
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1st cosh'lic velocity

2nd cosmic velocity
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3.98x10°
6.73x10°

=7.69 [km/s]

27R

V.,=—"——=0489 [km/s]
24x3600

V.=V, -V, =720 [km/s]
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Gravitational trajectories

trajectory - V ﬁ — ;X ml_;

angular momentum
around point C

M ... torque around C

Central force: Fllr

—> trajectory remains in same plane perp. to H




Gravitational trajectories

J = ‘ﬁ/m‘ I 17‘ = 1V sin g = const specific angular momentum = const

d6 = (Vsingdt)/r

dA = %r.(rdé’) = %rV sin @.dt

a4 _ er sin ¢ = h — const 2nd K_cep!er‘s law: areal
dt 2 2 velocity is constant

Plane trajectories and constant areal velocity follow from

central force requirement only; force field must not be
1/r? and not even conservative




Gravitational trajectories
conservative 1/r2 force field

conservation of total energy; ¢ is specific total
energy;

magnitude? of velocity in polar coordinates (r, 0)

differential equ. of
trajectory




Gravitational trajectories

h
2e.h?
+
Y7,

.cos(@+C)

Is equation of conical section in

polar coordinates (r,0) when origin

is in focal point; p is parameter and

€ numerical excentricity of conic Trajectories under influence of gravity of
section; the sun are conical sections with the sun
¢>1 ...hyperbola in one focal point

...parabola

...ellipse 1st Kepler

... Circle
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Gravitational trajectories

e>1— specific energy & >0 — hyperbola

e=1- specific energy & =0— parabola

e<l—> specific energy ¢ <0 — ellipse

numerical excentricity g
of conical section

parameter, semimajor axis and num.
excentricity of trajectory follow from kinetic
and dynamic parameters by analogy of anal.
solution with geometry of conical sections

from

all trajectories with same semimajor axis have
geometry

same (specific) total energy




from kinetics:
dA/dt = h/2

In case of closed trajectory ( ellipse) product
of constant areal velocity and period is equal
to area of ellipse

3rd Kepler
But also: period of elliptical trajectory only
dependent on semimajor axis




geometric parameters of orbit can

be derived from kinetic parameters
of motion

specific energy & >0 — hyperbola
specific energy & =0 — parabola

specific energy & <0 — ellipse

type of conics dependent
on total energy




The orbit of a body is completely determined, when we know at a given point

- the radius — vector from the central body
- the velocity vector

Or, equivalently r, V and included angle o







Elliptical orbits passing through same point with identical
velocities into different directions




Reaction propulsion

recoil .pcx m V p— ConSto

Tsiolkovski equation




Tsiolkovsky equation

since direction of v, (exhaust velocity) is opposite to velocity gain AV, the ratio
- AV/v, is always positive; therefore we can express the exponent as AV/ vl

* initial mass increases exponentially with AV (@ m= const.)

0 decreases exponentially with v,

 final mass, which can be brought into orbit with AV de-
creases with increasing AV and increases with v,




Thrust is the force propelling a rocket; it is the reaction force to the force accelerating
the exhaust particles. We consider the exhaust consisting of N identical particles
(gas, ions, electrons, stones,...) of mass m

mass flow [kg/s]

exhaust velocity [m/s]
T thrust [N]




Total impulse

Total impulse is the total momentum gained during the burn time t, of a thruster

When thrust is constant over time, or at least during thruster — on time intervals,
total impulse can be written as

dt

I = det = j(d—m)l/;dt = Vejdm =V,m,
0 0

0

m, ... propellant mass used during mission time t
V, ... exhaust velocity, assumed to be constant during mission




Specific impulse

what is the momentum produced per unit of
mass expelled?

The higher this ratio, the higher is the velocity
gain of a rocket upon exhaustion of ist fuel

mass;. |y, is an important quality
pararfieter

m mass flow [kg/s]

Ve exhaust velocity, assumed to be constant







specific power is the beam power P, necessary to produce a unit of thrust

V

= [m/s],[W/N]




these purely mechanical relationships are valid independent of
the methods used to accelerate exhaust particles

r=mli, [N] thrust

I=[Tdt=1I,m,=Tr [N.s] total impulse

dE. TI
== [W] jet power

[m/s] specific impulse

[W/N], [m/s] | specific power

Ay

m;/m, =e" [1] Tsiolkovsky equ.
rocket equ.
AV =1 In(m, /m,) ( )




The staging principle

initial / final mass ratio
of jth stage

AV =1, In(R, R, ..




The staging principle

when the rocket motors of all stages have the same specific impulse I,
the velocity difference of the final stage with respect to the initial velocity is

AV =1 In(R.R,..R,)

when the mass ratios of all stages are identical (R; = R)

AV =1I,In(R")=nI_.InR




+ a fixed total mass M of propellant is available for
acceleration of a payload of mass m

+ compare the velocity gains, when the propellant is
consumed in a single — stage or a multi — stage rocket

Assumptions:

* initial / final mass ratios identical = R for all stages
» mass of supporting structure in each stage is same fraction ¢
of propellant mass of respective stage (¢ = ,tankage factor")

. St. |
+

m, +¢m,
2. st. | YRIRA +m2)1+¢)
mL+m1(1+¢)+¢m2
m,
m; 1

+(
(o

+m, N1+ ¢)+ gm,

1
(m, +m, +m,
L

propellant mass for it stage;
S, ... sum of propellant masses m,,
m,, ..., m,




S,=m,+S§, =pm;, +¥S, +8§, w—'"lomL"'(1'|'V/)Sl EP’"L[1+(1+‘//)]
Sy =1+ S, = i, +yS, + S, = pm, +(1+0)S, = pm, [1+ 1+ )+ 1+ F ]
S, =m +tS. =pm tUS +8, = pm, +(1+W)S3 =me[1+(1+V/)+(1+V/)2+( "

total propellant mass for n
stages with equal tankage factor
¢ and equal initial / final mass
ratio R

In an n — stage rocket, velocity gain in each stage is WAV, = Isp InR
and total velocity gain of n stages is AV =nAV, =nl  InR




Single- and multi — stage
rockets using the same
amount of propellant to
accelerate same payload




Check

for tankage factor ¢ > 0, we have rockets consisting of payload
and fuel only and single- and ,multistage” rockets with same
payload and fuel masses must have the same AV

T L StEC)E
——zingle, f = 20%
+—=zingle, T =10%

—t—zingle, f =1%

number of stages
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Description

(Translational velocity change)

Orbit changes Convert one orbit to another

Plane changes Change orbital plane, other orbit

parameters remaining constant
Remove launch vehicle errors

Stationkeeping Maintain constellation position
Repositioning Change constellation position

(Rotational velocity change)

Thrust vector control Remove vector errors

Attitude control Maintain an attitude
Attitude changes Change attitudes

Reaction wheel unloading Remove stored momentum

Maneuvering Repositioning the spacecraft axes




Add Velocity:

Av
changing a circular orbit to a generalised coplanar
coplanar elliptical orbit maneuvre
AV is smallest when this

AV? = Vl,2 + sz term is largest ¥ cosa. = 1

the transfer can be made at any intersection of two orbits.
the least velocity change is necessary when the orbits are tangent and o is
zero

K/
0’0
/7
0’0




Fuel consumption for orbital maneuvre with total velocity change AV

AV

Tsiolkovsky: m, /mf —e

required fuel mass:




Example 1: Simple Coplanar Orbit Change
Consider an initially circular low Earth orbit at 300-km altitude. What velocity increase

would be required to produce an elliptical orbit 300 x 3000 km in altitude? What would be the
fuel consumption for a 750 kg (empty) S/C if I, = 3100 m/s ?

The gravity parameter of Earth is p=398,600.4 km3/s? Radius of Earth is = R = 6387 km

velocity on initial circular orbit: V:\/Z:\/ 398,600.4 =7.726 kml/s
r

(300 + 6378.14)

semimayjor axis of final elliptical orbit: = Tt _ (300+6378 +(3000+6379 ~8028 [kni]

2

=8.350 km/s

‘Jz;l u ‘J2(398600) 398,600
6678 8028

Velocity changes, made at periapsis, change apoapsis radius but not periapsis radius, and vice
versa; the radius at which the velocity is changed remains unchanged. As you would expect, the
plane of the orbit in inertial space does not change as velocity along the orbit is changed. Orbital
changes are a reversible process.




Spacecraft Velocity

End of Bum

Orbit

Start of Burn /
\ Spacecraft Velocity

———=—Thrust

burn.pcx

4

J/
>

thrust vector is held inertially fixed during the burn

orbital elements change continuously during burn

angle between thrust and velocity increases during burn

at constant thrust, acceleration in flight direction decreases during burn

L)

3

*

)
‘0

)

)
0’0




Hohmann transfer: minimum energy transfer
between circular orbits

> r—p Vi<V,

nevertheless all maneuvers
are accelerating

transfer orbit;

periapsis radius = radius of initial orbit
apoapsis radius = radius of final orbit




Example 3: Hohman transfer from circular Earth orbit (altitude = 200 km) to geostationary
orbit (r = 42219 km); what is fuel consumption to bring a 1 t payload to GEO with a specific
impulse of 3100 [m/s]?

Velocity in LEO:

398,600
V= \/Z = |20 778 [hmys]
r 6387+ 200

Velocity in GEO similarly is 3.07 [km/s]

_ (6387 +200)+42219
2

Perigee velocity in transfer ellipse is: 2,u 2%398600 398600
6387+200 24403

=10.22 [km/s]

Semimajor axis of transfer ellipse is = 24403 [km]




Velocity increase in transfer orbit insertion:

Apogee velocity in transfer ellipse is
Velocity increase at circularization
AV, =3.07-1.60=1.47 [km/s]

AV, =1022-7.78=2.44 [km/s]

Adding up to a total velocity increase of
Fuel consumption is:
I (3100)

The efficiency of the Hohmann transfer comes from the fact that the two
velocity changes are made at points of tangency between the trajectories.




plane change
maneuver

fvil = Vgl

. a
AV = 2Vi S1In— without velocity change
2

Plane changes are expensive on a propellant basis.
A 10-deg plane change in low Earth orbit would.require a velocity change of about 1.4 km/s.
For a 500 kg spacecraft, this plane change would require 292 kg of propellant, if one assumes an |y, of 3100 m/s

The equation shows that it is important to change planes through the
smallest possible angle and at the lowest possible velocity.

The lowest possible velocity occurs at the longest radius, that is, at apoapsis.




Transfar Orbit
Combined Maneuver
V = 1.606 km/s AVq_ o = 1.831 km/s

\ A~0.791 kmis
28.59 Ay~ 1.469 kmis

Circular Orbit
V = 3.0747 km/s

Combined maneuver: 4V, , = 1.831 km/s

For separate maneuvers,
plane change maneuver: 4V, = 0.791 km/s;
circularization maneuver: 4V, = 1.469 km/s; total A4V = 2.260 km/s.




Example 5: Repositioning

Consider a geosynchronous 1t spacecraft that is required to reposition by 2-deg, counter to the
velocity vector (westward), in a maneuvering time of one sidereal day (one orbit). What is the
fuel consumption for that maneuver, assuming an Isp of 3100 m/s?

AV,

SIC attime AP
P +AP

reposition ellipse

placeholder S/C
at time P + AP

S/C moves in reposition ellipse
,placeholder S/C orbits in GEO




The elements of a geosynchronous orbit are
42,164.17 km (circular)
86,164.09 s
3.07466 km/s

The period for the spacecraft on the

AP is equal to the time required for 2 deg
of motion on a geosynchronous orbit
elliptical reposition orbit is

semimajor axis of the reposition orbit

velocity at periapsis of an elliptical orbit
with semimajor axis a
velocity change to place the spacecraft
on the reposition ellipse

Propellant consumption under
assumption of negligible mass change

AP

Ag’ p_ 2%86,164.09

2 = 478.689 [s]
360 360

P =86,164.09 + 478.689 = 86,642.78 [s]

L 3\/(86,642.78)2(39&60@ = 42,320 [km]

- 47*

2u \/ 2(398,600) 398,600

=3.08032 [km/s]
42164 42320

roa
3.08032km/s - 3.07466km/s = 5.66 m/s

The same velocity change (in the opposite direction
is necessary for recirculation of repositioning orbit

1132
1220 ql_366 [k
3100} } Léz]




Gravity assist maneuvre (slingshot)

S/C may gain velocity in the sun — fixed system when
passing close to a planet




Basically a 3 — body problem; approximation possible, when m <<M << Mg,
Consider head — on elastic collision in a fixed coordinate system

2 2 2 2
Mu” +mv” = Mu; + mv,

Mu —mv = Mu, + mv,




MP/F;OIEMS/FIE rSOIerMP/MS




post - encounter Yo
heliocentric orbit \ T|| B,

planetary sphere
hyperbolic orbit of influence

gravity assist
planqt

pre - encounter
heliocentric orbit

vectorial velocity addition
at transfer between
helocentric and
planetocentric motions




Gravity assist at Jupiter
vp =13.1 km/s Av=-2.1kmis ¢

A v =+7.07 km/s

arrival o
velocity v,

passage behind planet passage in front of planet

gravity assist at Jupiter can boost S/C velocity to hyperbolic orbit so that it can
leave solar system (AV > (212-1) v, = 5.4 km/s)




S
=
2
;
3
5
8
T
=
73
E
=
=

heliocentric arrival angle [o]




Maximum energy gain in gravity assist at different planets
(closest approach =rp)

Planetary Solar SOl Equatorial
velocity distance radius radius
[km/s] [106 km] [106 km] [km]

Mercury 3.28E23
Venus 4.87E24
Earth 5.97E24
Mars 6.42E23
Jupiter 1.90E27
Saturn 5.69E26
Uranus 8.68E25
Neptune 1.03E26

Pluto . 1.27E22




CASSINI probe to Saturn and Titan

SATURN CRBEIT IMSERTION I"-,'

VENUS 1 FLYDY 1JUL 2004 @
26 APR 1998 5

WENUS 2 FLYEY
24 JUN 1939

JIHYO S NYNLDYS

VEMUS

TARGETING
MANEUVER
3 DEC 1993

34 81T
LgE0 s.43L04nml
L TBE

=
|
i

SHW

T LAUNCH

15 QCT 1997
- JURITER
EARTH FLYBY i/ FLYGY
18 AlG 14999 30 DEC 2000

Hohmann transfer 8 gravity assists

total AV [km/s] 15.7 2
flight time [y] 6 6.7




Liftoff from ground

energy conservation
e = E/m ... specific energy

specific energy at rest on Earth's surface
v =0, r = R (purely potential energy)

velocity in circular orbit with
Radius R

spec. kinetic energy in circular orbit
at Earth's surface, r=a =R

total specific energy in orbit near
Earth‘s surface

spec. energy for liftoff from rest into
circular orbit near Earth‘s surface

N Cu [3.98x10° _ AV necessary for liftoff into
A =g = \/; “V673:10° 7.69 [km/s]@ circular orbit near Earth's surface




Liftoff from ground
Y7, 3.98x10°
AV = 2Ae, = |= = 2222 =769 [km/
“07VR “Ve6.73x10° Lim/s]

AV 2 exp| V9D 1L 10.95 (kg kel
I (3100)

altitude

h l-:- = rh-ce-é], ... thrust
: ' L s
ascent trajectory

Fv = cwArG V2 (-5,)

.. air resistance

d .. gravity

i ... centrifugal force

curvature radius
of trajectory

surface of Earth
s s NN e i / VNN VAV
liftoff point




Spiraling up

trajectory with
constant thrust

trajectory with
impulsive thrust

AV, propellant consumption and mission time can be estimated when

» thrust direction is always tangential to trajectory (permanent attitude change!!)
» thrust << gravity force




Spiraling up

equation of motion for S/C of mass m,
propelled by thrust T

Specific energy = spec. kinetic energy +
+ potential

potential energy and its gradient

time derivative of specific energy

acc. to assumption, always v Il T; 9 inner
product replaced by magnitudes




Spiraling up

ds_dsdr _,
dt dr dt

thrusting AV is equal to difference
of velocities in initial and final orbit




Spiraling up

time required to spiral up fromr,tor

assumption: T = const. dm/dt = const. B8 ;5 =, — m(t ~t,)




Spiraling up

Example

7809+/2/10° ~
m, = 100.(e - 1)= 11.7 [kg] Electric propulsion: T =5 mN, ISp =10° m/s;
Time and propellant mass required for spiraling
up a 100 kg payload from 300 km LEO (v =

10° s
T = 100w(€7809@10 —1)5 51 [y] 7730 m/s) to escape velocity?




Comparison of Hohmann and spiral transfer

Hohmann




Comparison of Hohmann and spiral transfer

AV m 1
TSP —)me:—f ﬁ[ ——)

Jp
depending only on orbital radii also depending on S/C mass, thrust

(and specific impulse)

T \r

L

—Hohmann

flight time [h]

—spiral, 1 mhk
—zpiral, 3 mM |

—spiral, 10 mM

1,E+05
outer orbital radius [km] moon




Attitude maneuvres

3 — axis controlled S/C




Thruster combinations to produce control forces and moments (HYPER, 2003)
Option 1

Forcein+ X

Forcein-X

Forcein+Y

Forcein-Y

Forcein+Z

Forcein-Z

torque about X (+)

torque about X (-)

torque about Y (+)

torque about Z (+)

(

(

(
torque about Y (-)

(

(

torque about Z (-)

Four clusters, each with 3 thrusters, are located at the corners of the S/C
on opposite diagonals:

group {1, 2, 3, 4} is pointing into +/- X

group {11, 12, 13, 14} into +/- Y

group {21, 22, 23, 24} into +/- Z.




Thruster combinations to produce control forces and moments (HYPER, 2003)
Option 2




M+ 13+15+ 17

11+15
+ Tarque ¥ {-) pair,
or
13 +17

+ Torgue x {+) pair

12+ 14 +16 + 18

12+18
+ Torgue x {-) parr,
or
14 +18
+ Torgue ¥ {+) pair

forcein+ Y

f+8

2+3+5+8

force in-Y

1+4

1+4+6+7

force in+ Z

2+7

4454247

force in-Z

1+6

1+8+3+6

torque about X [+)

1+5

i+7

torque about X |-}

2+6

4+8

torque about ¥ (#)

11 +14

16+ 17

torque about Y |-

12+ 13

15+ 18

torque about Z (4)

1M+13+18+18

11+18
+ Farce z () pair,
or
13+16
+ Force z (-] pair

torque about Z |-)

12+14+ 15417

12+17
+ Force z (+) pair,
or
14 +15

+ Force z (-} pair




Radlal Thrugters
Radial Velocity Cnntrol

P
/

K/d;

$pin/Despin Thrusters ..

\

Axial Thrusters —
Axlal Velocity Control

Precession Control

Attitude control thrusters on spin — stabilised S/C




Kinetics for rotational motion of S/C
rotational motion Lin. analogon rotational motion
F = force [N]

T = torque [N.m]

®@ = angle of rotation of the s = path [m] 1 )

spacecraft [rad] ®= 5 at,

® = angular velocity of the velocity [m/s]
spacecraft [rad/s]

angular acceleration of the acceleration
spacecraft during a firing, [m/s?]
[rad/s? ]

mass moment of inertia of m = mass [kg]
the vehicle, [kg.m?]

= duration of the burn [s] t = time [s]

= change of spacecraft p = momentum
angular momentum during [m/s]
the firing, [kg.m?/s]




Kinetics for rotational motion of S/C

torque, produced by n thrusters, mounted at torque arm L,
firing with equal thrust F

during the burn, the angular acceleration of the spacecraft is

at shut down, the vehicle will have turned by
at shutdown, the spacecraft is left rotating at angular velocity

angular momentum produced by a single firing is H = Ttb
propellant consumed during the burn is




shows the advantage of a long moment arm. The maximum moment
arm is constrained in a surprising way: by the inside diameter of the

launch vehicle payload fairing

Launch vehicle Fairing i.d.[ft]

Atlas 9.6 or 12
Delta 8.30r 10
Space Shuttle 15

Titan |l 10

Titan Ill 13.1
Titan IV 16.7




one — axis maneuvre




total angle of rotation is ©,, = O (accelerating) + © (coasting) + & (braking)

rotation during coasting is

the coasting rotation angle is
total rotation during acceleration, coasting and braking is

maneuver time is

minimum rotation time is a fully powered

maneuver with zero coast time

thrust level required for each thruster
at given minimum rotation time

propellant required for a one-axis

maneuver is twice the single burn consumption




Example 6: One-Axis Maneuver

Find the minimum time required for a spacecraft to perform a 90-deg turn about the z axis
with two thrusters if the spacecraft has the following characteristics:

Mass of S/C =500 kg,

Radius of S/C =0.75 m

- Moment of inertia about the z axis 5(2/5)Mg L? = 112.5 kg.m?

Moment arm = 0.75m

Thrust of each engine = 10 N

and

0.= 2 =1.5708 rad

=4.854 =

20,1, \/2*1.5708*112.5

nFL 2*10*0.75

How much propellant was consumed by the maneuver if I, = 1900 m/s ?

nFt, 2%¥2%10%4.854
I 1900

Sp

=2 =0.102 kg




precession of spin axis

H; ... initial angular momentum
H, ... applied angular momentum

/9~ Ha _nFLD

H. Iya)

1

nutation angle caused by
application of single thrust pulse

Two pulses are required to precess the spin axis; both pulses are parallel to the spin axis. After the
First pulse, the spin axis will continue to precess until a second pulse of equal magnitude and opposite
direction is fired. The spin axis can be repositioned by selecting the timing of the second pulse.

The first pulse is used to cause nutation at an angle of one-half the desired precession. The second
pulse stops the nutation and provides the remaining half of the desired angle




Example 7: Precession of Spin Axis
What burn time, or pulse width, is required to precess a spacecraft spin axis by 3-deg (0.05236 rad)

under the following conditions:

Thrust 10 N Spacecraft Spin rate 2 rpm (0.2094 rad/s)
Momentarm =0.5m Specific impulse = 1900 m/s
Moment of inertia 112.5 kg.m2

@/ w 0.05236*112.5%0.2094 burn time of thruster to produce nutation
t, = e 2 T 0.124 [s]
2nFL 2*1*10*0.5 angle ©/2

nFt, 2*1*10%0.124
m :2 =V
P 1900

Sp

=0.0013 [kg]=1.3 [g] total propellant consumed by both burns




limit cycle without external torque

Accelerate

A limit cycle without external torque swings the spacecraft back and forth between preset

angular limits. When the spacecraft drifts across one of the angular limits ®, , the attitude-control
system fires a thruster pair for correction. The spacecraft rotation reverses and continues until the
opposite angular limit is reached, at which time the opposite thruster pair is fired. It is important

that the smallest possible impulse be used for the corrections because the impulse must be
removed by the opposite thruster pair.




total angle of rotation ® | replacing 2t, 2P,

the limit settings + @, are one-half of the coasting angle i«
O =2 ©_(neglecting small rotations during accel & brake)

each cycle includes two pulses;
the propellant consumed per cycle is

Propellant consumption is small for low thrust, short burn time, and high specific impulse
in pulsing operation. Pulsing engines are characterized by minimum impulse bit |,

Imin = (F-Pw)min

The minimum impulse bit is a characteristic of a given thruster/valve combination




pulsing properties of attitude — control thrusters

Min impulse bit | Pulsing
[mN.s] I
[mrs]

Monopropellant - 50 - 100 1200
N2H4

Bipropellant - 10000 750 - 1500 1200
N,O,/MMH

coast time through 20,

length of a cycle (from +©, to -O, ) if minimum impulse bits
are used; usually, P, can be neglected

propellant consumption per unit time




Example 8: Limit-Cycle Operation

A spacecraft with 112.5 kg.m? inertia uses 5N thruster pairs mounted at a radius of 0.5 m from
the center of mass. For limit-cycle control to @ = 0.5 deg (0.008727 rad), what is the propellant
consumption rate if g, is 1900 m/s, the pulse duration is 30 ms, and there are no external

torques. ?

* * .
6+ L2 T0008T27 _ o6 . 56181=26,241 [5] time for 1 cycle

2*5%0,5*%0,030

—*=2————"=0.00032 [kg/cycle]=0,32 [g/cycle]j@ Propeilant consumed per cycle

1900

m
po Q00932 oy 51105 [kg/s]=1.037 [kg/day][ll 3Verage propellant
., 26,241 consumption rate




Simplified equations for external torques

Disturbance

Type

Influenced
primarily by

Formula

Gravity
gradient

Constant or
cyclic,
depending on
vehicle
orientation

Spacecraft
geometry, Orbit
altitude

~ 4x10°5 [Nm]

3u
T, ==5L. -1,l0

where T, is the max gravity torque; p is the Earth’s gravity constant (398,600
km3Is?), r the orbit radius, ® the max deviation of the z axis from vertical in
radians;|, and |, are moments of inertia about z and y (or x, if smaller) axes.

Solar radiation

Constant force
but cyclic on
Earth-oriented
vehicles

Spacecraft
geometry,
Spacecraft surface
area

The worst-case solar radiation torque

T, = P AL(1+ g)cosi ~ 7x107 [Nm]

is due to a specularly reflective surface, where Pg is the solar constant, 4.617
x 108 N/m2; A, is the area of the surface, L, the center of pressure to center
of mass offset, i the angle of incidence of the sun, and q the reflectance factor
that ranges from 0 to 1; q = 0.6 is a good estimate

Magnetic field

Orbit altitude,
Residual spacecraft
magnetic dipole,
Orbit inclination

T, =DB

where T is the magnetic torque on the spacecraft, D the residual dipole
moment of the vehicle in A.m2, and B the Earth's magnetic field in Tesla. B
can he approximated as2M/r3 for a polar orbit to half that at the equator. M is
the magnetic moment, 8 x 1025 emu at Earth, and r is radius from dipole
(Earth) center to spacecraft in centimeters

Aerodynamic

Constant for
Earth-oriented
vehicle in
circular orbit

Orbit altitude,
Spacecraft
configuration

T, =2 FL

T, is the summation of the forces F; on each of the exposed surface areas
times the moment arm L, to the center of each surface to the center of mass,
where

F = pC,AV?/2

with F the force, C, the drag coefficient (usually between 2.0 and 2.5), p the
atmospheric density, A the surface area, and V the spacecraft velocity.




acceleration due to
external torque

total angular momentum H supplied by the
propulsion system exactly equals the momentum
induced by the external torque T, during mission
time t,; F istime —averaged thrust

propellant mass required to compensate for the
external torque

one-sided limit cycle

with an external torque on the spacecraft,
rotation occurs until a limit line is reached
and a thruster pair is fired for correction




S/C rotation is accelerated by from zero speed at the extreme limit +©, (point 1) through an angular path
of < 20L with an angular acceleration a,, generated by the external torque only. The opposite

limit angle will be reached after an angular interval 20, and a “pass” time t, (approximately equal to

half the cycle time t,).

Now the thrusters are firing, producing a thrusting angular
acceleration a.. They reduce this angular speed to 0

(at the turning point 3) after a burning time of P,,/2

From that follows the impulse per thruster, required to turn
around the angular speed of the S/C, so that it moves against
external torque up to an angle of not larger than ©,

If minimum impulse bits |, are used, the rotation limit must be

wider than a minimum ©, in order to avoid thrusters being fired
in the direction of external torque. This would cause excessive

propellant consumption.




forced limit cycle

A forced limit cycle occurs when thrusters are
fired in the direction of the external torque; that
is, when the condition

2712712
n"L°I .

161.T,

is not met

R [Hz] = 1/t;, = limit-cycle rate
of the system
tn [S] = mission duration

R can only be calculated numerically from a higher order equation containing the parameters
| s Pws Ty s L, O

min’




To perform a rotational maneuver with a reaction wheel, the flywheel is accelerated
by a motor. The spacecraft accelerates in the opposite direction.




A S/C can be rotated by an angle © by application
of a torque T for time interval t

this torque can be supplied by an accelerating flywheel;
angular acceleration ay, is supplied by a motor

The S/C can be returned to its original position by applying the opposite torque to the flywheel;

the net increase in flywheel rotational speed then is 0 (neglecting friction). Due to unbalanced torques
however, the flywheel eventually will reach its upper angular speed limit and then is not fully
available for maneuvering any more. To become maneuverable again it must be ,unloaded®, i.e.

its angular speed must be brought to 0 again.




total angular momentum of a fully loaded wheel is

to unolad the wheel, a torque in the opposite direction must be H=Tt=nFLt
applied to it by the motor for a certain time; in order not to

produce net rotation of the S/C, an equal and opposite
momentum must be supplied by the thrusters:

time required for unloading is

propellant consumption for unloading is




Example 9: Reaction Wheel Unloading

How much propellant does it take to unload one of the Magellan wheels, and
how long does it take? (JPL Venus Mission, 1994)

The Magellan wheel characteristics are:
maximum momentum = 27 N-m-s maximum wheel speed = 4000 rpm = 418.879 rad/s

The thruster pair to be used has the following characteristics:
thrust = 1 N; moment arm = 2m pulsing specific impulse 1500 m/s.

27

_ —0.009 [k
2%1500 Lke]

o H 2T
nFL  2%1%2

=6.75 [s]




