	Pioneer 10	Pioneer 11	Voyager 1	Voyager 2
Launch Date	Mar. 3,1972	Apr. 5,1973	Aug. 20,1977	Sept. 5,1977
Loss of Signal	2001 (1994 expected) (at 59 AU)	1996 (at 45 AU)	2012 (at 121 AU)	2013 (at 106 AU)
Departure velocity Asymptotic (AU/yr)	2.4	2.2	3.5	3.4
Trajectory Angle to Earth Orbit Plane (degrees	2.9	12.6	35.5	-47.5
Closest Stellar Approach				
Distance (ly)	3.27	1.65	1.64	0.80
Star	Ross 248	AC+793888	AC+793888	Sirius
Years to reach	32,600	42,400	40,300	497,000

Isaac Newton 1643 - 1727

Gottfried Wilhelm Freiherr von Leibniz 1646 - 1716

- 1. Every body continues in its state of rest or of uniform motion in a straight line except insofar as it is compelled to change that state by an external impressed force
- 2. The rate of change of momentum of the body is proportional to the impressed force and takes place in the direction in which the force acts.
- 3. **To every action there is an equal and opposite reaction**

d**p** / dt = **F**

Every particle of matter attracts every other particle of matter with a force directly proportional to the product of the masses and inversely proportional to the square of the distance between them.

$$\vec{F} = -G\frac{m_1m_2}{r^2}\vec{e}_r$$

$$U(r) = -G\frac{M}{r}$$

1.	The planets move in ellipses with the sun at one focus
2.	Areas swept out by the radius vector from the sun to a planet in equal times are equal
3.	The square of the period of revolution is proportional to the cube of the semimajor axis. That is, $T^2 = const \ge a^3$

Circular orbit

$$\frac{mV^2}{r} = \frac{GmM}{r^2}$$

$$P = \frac{2r\pi}{V} = 2\pi \sqrt{\frac{r^3}{\mu}}$$

Gravitational trajectories

 $h = |\vec{H} / m| = |\vec{r} \times \vec{V}| = rV \sin \phi = const$

specific angular momentum = const

Plane trajectories and constant areal velocity follow from central force requirement only; force field must not be $1/r^2$ and not even conservative

Gravitational trajectories

$$F = -\frac{dU}{dr} = -\frac{m\mu}{r^2}$$

conservation of total energy; $\boldsymbol{\epsilon}$ is specific total energy;

magnitude² of velocity in polar coordinates (r, θ)

differential equ. of trajectory

h = h

																				_													
- e - e -		-																		Lr.												-	
	~																																
																														0.1			
	~																														-		
									т																-	~							
																								~~									
										-	_													-									
																					_												
															•			•	-														
								-																									
								-																			 ~						
																	_				-							-					

$$\theta + C = -h \int \frac{du}{\sqrt{\varepsilon + 2\mu . u - h^2 u^2}}$$

general solution

Gravitational trajectories

r = 1/u

$$\theta + C = -h \int \frac{du}{\sqrt{\varepsilon + 2\mu . u - h^2 u^2}}$$

$$r = \frac{h^2 / \mu}{1 - \sqrt{1 + \frac{2\varepsilon \cdot h^2}{\mu^2}} \cdot \cos(\theta + C)}$$

when θ is counted from minimum r, then $\cos = -1$

$$r = \frac{h^2 / \mu}{1 + \sqrt{1 + \frac{2\varepsilon \cdot h^2}{\mu^2}} \cdot \cos\theta}$$

Trajectories under influence of gravity of the sun are conical sections with the sun in one focal point

From geometry:

 $\frac{P}{1+\varepsilon\cos\theta}$

Is equation of conical section in polar coordinates (r,θ) when origin is in focal point; p is parameter and $\underline{\varepsilon}$ numerical excentricity of conic section;

$$\underline{\varepsilon} > 1 \dots$$
hyperbola

$$\underline{\varepsilon} = 1 \dots \text{parabola}$$

$$\underline{\varepsilon}$$
 < 1 ...ellipse

$$\underline{\varepsilon} = 0 \dots \text{ circle}$$

Gravitational trajectories

numerical excentricity ϵ of conical section

from

 $\overline{\varepsilon} > 1 \rightarrow specific energy \quad \varepsilon > 0 \rightarrow hyperbola$ $\overline{\varepsilon} = 1 \rightarrow specific energy \quad \varepsilon = 0 \rightarrow parabola$ $\overline{\varepsilon} < 1 \rightarrow specific energy \quad \varepsilon < 0 \rightarrow ellipse$

parameter, semimajor axis and num. excentricity of trajectory follow from kinetic and dynamic parameters by analogy of anal. solution with geometry of conical sections

all trajectories with same semimajor axis have same (specific) total energy

In case of closed trajectory (ellipse) product of constant areal velocity and period is equal to area of ellipse

3rd Kepler

But also: period of elliptical trajectory only dependent on semimajor axis

$$r = \frac{h^2 / \mu}{1 + \sqrt{1 + \frac{2\varepsilon \cdot h^2}{\mu^2} \cdot \cos \theta}}$$

$$a = -\frac{\mu}{2\varepsilon}$$
 $\overline{\varepsilon} = \sqrt{1 + \frac{2\varepsilon \cdot h^2}{\mu^2}}$ $p = h^2 / \mu$

geometric parameters of orbit can be derived from kinetic parameters of motion

specific energy
$$\varepsilon > 0 \rightarrow$$
 hyperbola
specific energy $\varepsilon = 0 \rightarrow$ parabola
specific energy $\varepsilon < 0 \rightarrow$ ellipse

type of conics dependent on total energy

The orbit of a body is completely determined, when we know at a given point

- the radius vector from the central body
- the velocity vector

Or, equivalently r, V and included angle $\boldsymbol{\alpha}$

1	Evaluate μ = GM _{Sun}	
2	The total energy per mass of the orbit is constant so by evaluating the kinetic and gravitational potentialenergy at one point in the orbit (EQ 10) we obtain	$\frac{E}{m} = \frac{V^2}{2} - \frac{GM_{sun}}{r}$
3	The energy per mass of the spacecraft determines the orbits semi-major axis (EQ 11):	$a = -\frac{GM_{sun}}{2(E/m)}$
4	This then gives the circular velocity of the orbit (EQ 3)	$v_c = \sqrt{\frac{GM_{sun}}{a}}$
5	The period of the orbit is given by Kepler's third law:	$P = P_{earth} \left(\frac{a}{a_{earth}}\right)^{3/2}$
6	The areal velocity is know from the initial conditions (velocity and position) of the spacecraft; α being the angle between radiusvector and S/C direction	$A = \frac{1}{2}r.V.\sin\alpha$
7	The other method of determining areal velocity gives us the eccentricity of the orbit, by taking the ellipse area as Aell = $\pi a2(1-e2)1/2$	$A = \frac{A_{ell}}{P} = \frac{\pi a^2 \sqrt{1 - \varepsilon^2}}{P}$ $\varepsilon = \sqrt{1 - \left(\frac{AP}{a^2 \pi}\right)^2}$
8	We now know the size and shape of the orbit and can	$r_p = a(1-\varepsilon)$
	determine the extent of the orbit from (EQ 16) and (EQ 18)	$r_a = a(1 + \varepsilon)$
9	The final parameter is the true anomaly as determined by the angle the craft is from perihelion of the new orbit (see ellipse equation in Section 2.3.1)	$\cos\Theta = \frac{1}{\varepsilon} \left(\frac{a}{r} \left(1 - \varepsilon^2 \right) - 1 \right)$

Elliptical orbits passing through same point with identical velocities into different directions

Tsiolkovski equation

since direction of v_e (exhaust velocity) is opposite to velocity gain ΔV , the ratio - $\Delta V/v_e$ is always positive; therefore we can express the exponent as $\Delta V/Iv_eI$

- initial mass increases exponentially with ΔV (@ m_f = const.)
 - decreases exponentially with v_e
- final mass, which can be brought into orbit with ΔV decreases with increasing ΔV and increases with v_e

Thrust

Thrust is the force propelling a rocket; it is the reaction force to the force accelerating the exhaust particles. We consider the exhaust consisting of N identical particles (gas, ions, electrons, stones,...) of mass m

$$T = \frac{dP}{dt} = \frac{d}{dt} (N.p) = \frac{dN}{dt} \cdot p = \begin{pmatrix} \cdot \\ N m \end{pmatrix} V_e = \stackrel{\bullet}{m} \cdot V_e$$

m mass flow [kg/s]
 V_e exhaust velocity [m/s]
 T thrust [N]

Total impulse

Total impulse is the total momentum gained during the burn time t_b of a thruster

definition
$$I = \int_{0}^{tb} Tdt \ [N.s]$$

When thrust is constant over time, or at least during thruster – on time intervals, total impulse can be written as

$$I = T.\tau$$

$$I = \int_{0}^{\tau} Tdt = \int_{0}^{\tau} \left(\frac{dm}{dt}\right) V_{e} dt = V_{e} \int_{0}^{\tau} dm = V_{e} . m_{p}$$

 $m_p \dots$ propellant mass used during mission time τ $V_e \dots$ exhaust velocity, assumed to be constant during mission

Specific impulse

what is the momentum produced per unit of mass expelled?

definition

The higher this ratio, the higher is the velocity gain of a rocket upon exhaustion of ist fuel mass;. I_{sp} is an important quality parameter

$$I_{sp} = \frac{dp/dt}{dm/dt} = \frac{p}{m} = \frac{T}{m} \quad [m/s]$$

$$m \text{ mass flow [kg/s]}$$

$$I_{sp} = \frac{dp}{dm} = \frac{d(m.V_e)}{dm} = V_e \quad [m/s]$$

$$V_e \text{ exhaust velocity, assumed to be constant}$$

$$P_{sp} = \frac{\frac{MV_{e}^{2}/2}{MV_{e}}}{\frac{MV_{e}}{M}} = \frac{V_{e}}{2} \quad [m/s], [W/N]$$

these purely mechanical relationships are valid independent of the methods used to accelerate exhaust particles

$T = \dot{m} . I_{sp}$	[N]	thrust
$I = \int_{0}^{\tau} T dt = I_{sp} m_{p} \equiv T \tau$	[N.s]	total impulse
$P_j = \frac{dE_j}{dt} = \frac{TI_{sp}}{2}$	[W]	jet power
$I_{sp} = \frac{dp}{dm} = V_e = \frac{T}{\overset{\bullet}{m}}$	[m/s]	specific impulse
$P_{sp} = \frac{P_j}{T} = \frac{I_{sp}}{2}$	[W/N], [m/s]	specific power
$m_i / m_f = e^{\frac{\Delta V}{I_{sp}}}$ $\Delta V = I_{sp} \ln(m_i / m_f)$	[1]	Tsiolkovsky equ. (rocket equ.)

The staging principle

The staging principle

when the rocket motors of all stages have the same specific impulse I_{sp} , the velocity difference of the final stage with respect to the initial velocity is

$$\Delta V = I_{sp} \ln(R_1 \cdot R_2 \cdot \cdot \cdot R_n)$$

when the mass ratios of all stages are identical $(R_i = R)$

 $\Delta V = I_{sp} \ln(R^n) = n I_{sp} . \ln R$

 $\psi = (1 +$

- a fixed total mass M of propellant is available for acceleration of a payload of mass $m_{\rm L}$
- compare the velocity gains, when the propellant is consumed in a single – stage or a multi – stage rocket

Assumptions:

- initial / final mass ratios identical = R for all stages
- mass of supporting structure in each stage is same fraction φ of propellant mass of respective stage (φ = "tankage factor")

$$\mathbf{m_3} \quad \mathbf{1. St.} \quad R = \frac{m_L + m_1(1+\phi)}{m_L + \phi m_1} \qquad m_1 = \frac{R-1}{1-\phi(R-1)} m_L$$

$$\mathbf{2. St.} \quad R = \frac{m_L + (m_1 + m_2)(1+\phi)}{m_L + m_1(1+\phi) + \phi m_2} \qquad m_2 = \frac{R-1}{1-\phi(R-1)} [m_L + (1+\phi)m_1]$$

$$\mathbf{3. St.} \quad R = \frac{m_L + (m_1 + m_2 + m_3)}{m_L + (m_1 + m_2)(1+\phi) + \phi m_3} \qquad m_3 = \frac{R-1}{1-\phi(R-1)} [m_L + (1+\phi)(m_1 + m_2)]$$

$$\frac{m_1 - p_1}{p_1} \qquad m_1 = p_1 + \psi \cdot S_{i-1} \qquad \text{propellant mass for ith stage;} S_i \dots \text{ sum of propellant masses } m_1, m_2, \dots, m_i$$

$$m_i = \rho m_L + \psi S_{i-1}$$

$$S_{1} = \rho m_{L}$$

$$S_{2} = m_{2} + S_{1} = \rho m_{L} + \psi S_{1} + S_{1} = \rho m_{L} + (1 + \psi)S_{1} = \rho m_{L}[1 + (1 + \psi)]$$

$$S_{3} = m_{3} + S_{2} = \rho m_{L} + \psi S_{2} + S_{2} = \rho m_{L} + (1 + \psi)S_{2} = \rho m_{L}[1 + (1 + \psi) + (1 + \psi)^{2}]$$

$$S_{4} = m_{4} + S_{3} = \rho m_{L} + \psi S_{3} + S_{3} = \rho m_{L} + (1 + \psi)S_{3} = \rho m_{L}[1 + (1 + \psi) + (1 + \psi)^{2} + (1 + \psi)^{3}]$$

$$S_{n} = \rho m_{L} \sum_{0}^{n-1} (1+\psi)^{i} = \rho m_{L} \frac{(1+\psi)^{n} - 1}{\psi} = m_{L} \frac{(1+\psi)^{n} - 1}{1+\phi}$$

total propellant mass for n stages with equal tankage factor φ and equal initial / final mass ratio R

 $\Delta V = n \Delta V_i = n I_{sp} \ln R$

In an n – stage rocket, velocity gain in each stage is $\Delta V_i = I_{sp} \ln R$

and total velocity gain of n stages is

Check

for tankage factor $\phi \rightarrow 0$, we have rockets consisting of payload and fuel only and single- and "multistage" rockets with same payload and fuel masses must have the same ΔV

$$\rho = \frac{R-1}{1-\phi(R-1)} \to R-1$$
$$\psi = (1+\phi)\rho \to R-1$$

$$V_{\sin gle} = I_{sp} \cdot \ln\left[\frac{1+\phi}{\phi+(1+\psi)^{-n}}\right] \to I_{sp} \ln\left[\frac{1}{R^{-n}}\right] = nI_{sp} \ln(R) = \Delta V_{multi}$$

Mission Design and Attitude Control

Task	Description
Mission design	(Translational velocity change)
Orbit changes	Convert one orbit to another
Plane changes	Change orbital plane, other orbit parameters remaining constant
Orbit trim	Remove launch vehicle errors
Stationkeeping	Maintain constellation position
Repositioning	Change constellation position
Attitude Control	(Rotational velocity change)
Thrust vector control	Remove vector errors
Attitude control	Maintain an attitude
Attitude changes	Change attitudes
Reaction wheel unloading	Remove stored momentum
Maneuvering	Repositioning the spacecraft axes

coplanar orbit changes

the least velocity change is necessary when the orbits are tangent and α is zero

Fuel consumption for orbital maneuvre with total velocity change ΔV

Tsiolkovsky:	$m_i / m_f = e^{\frac{\Delta V}{Isp}}$
required fuel mass:	$m_p = m_i - m_f = m_i \left[1 - \exp\left(-\frac{\Delta V}{I_{sp}}\right) \right]$
	$m_p = m_f \left[\exp\left(\frac{\Delta V}{I_{sp}}\right) - 1 \right]$
Example 1: Simple Coplanar Orbit Change

Consider an initially circular low Earth orbit at 300-km altitude. What **velocity increase** would be required to produce an elliptical orbit 300 x 3000 km in altitude? What would be the **fuel consumption** for a 750 kg (empty) S/C if I_{sp} = 3100 m/s ?

The gravity parameter of Earth is μ =398,600.4 km³/s² Radius of Earth is \approx R = 6387 km

Velocity changes, made at periapsis, change apoapsis radius but not periapsis radius, and vice versa; the radius at which the velocity is changed remains unchanged. As you would expect, the plane of the orbit in inertial space does not change as velocity along the orbit is changed. Orbital changes are a reversible process.

finite burn losses

- thrust vector is held inertially fixed during the burn
- orbital elements change continuously during burn
- angle between thrust and velocity increases during burn
- at constant thrust, acceleration in flight direction decreases during burn

Example 3: Hohman transfer from circular Earth orbit (altitude = 200 km) to geostationary orbit (r = 42219 km); what is fuel consumption to bring a 1 t payload to GEO with a specific impulse of 3100 [m/s]? *Velocity in LEO:*

The efficiency of the Hohmann transfer comes from the fact that the two velocity changes are made at points of tangency between the trajectories.

plane change maneuver

without velocity change

Plane changes are expensive on a propellant basis.

A 10-deg plane change in low Earth orbit would require a velocity change of about 1.4 km/s.

 $\Delta V = 2V_i \sin \frac{\alpha}{2}$

For a 500 kg spacecraft, this plane change would require 292 kg of propellant, if one assumes an I_{sp} of 3100 m/s

The equation shows that it is important to change planes through the smallest possible angle and at the lowest possible velocity.

The lowest possible velocity occurs at the longest radius, that is, at apoapsis.

Combined maneuver: $\Delta V_{1-2} = 1.831$ km/s

For separate maneuvers, plane change maneuver: $\Delta V_1 = 0.791$ km/s; circularization maneuver: $\Delta V_2 = 1.469$ km/s; total $\Delta V = 2.260$ km/s.

Example 5: Repositioning

Consider a geosynchronous 1t spacecraft that is required to reposition by 2-deg, counter to the velocity vector (westward), in a maneuvering time of one sidereal day (one orbit). What is the fuel consumption for that maneuver, assuming an Isp of 3100 m/s?

"placeholder" S/C orbits in GEO

Repositioning, cont'd Space Prop		Propulsion
	The elements of a geo $r =$ 42,10 $P =$ 86,1 $V =$ 3.074	osynchronous orbit are 64.17 km (circular) 64.09 s 466 km/s
ΔP is equal to the till of motion on a geos	me required for 2 deg ynchronous orbit	$\Delta P = \frac{\Delta \varphi^0}{360} P = \frac{2*86,164.09}{360} = 478.689 \ [s]$
The period for t elliptical reposit	he spacecraft on the tion orbit is	<i>P</i> = 86,164.09 + 478.689 = 86,642.78 [s]
semimajor axis o	of the reposition orbit	$a = \sqrt[3]{\frac{P^2 \mu}{4\pi^2}} = \sqrt[3]{\frac{(86,642.78)^2 (398,600)}{4\pi^2}} = 42,320 \ [km]$
velocity at periaps with semimajor ax	is of an elliptical orbit is a	$V = \sqrt{\frac{2\mu}{r} - \frac{\mu}{a}} = \sqrt{\frac{2(398,600)}{42164} - \frac{398,600}{42320}} = 3.08032 \ [km/s]$
velocity change to on the reposition e	place the spacecraft ellipse	3.08032km/s - 3.07466km/s = 5.66 m/s The same velocity change (in the opposite direction is necessary for recirculation of repositioning orbit
Propellant consum assumption of neg	nption under gligible mass change	$m_p = m_f \left[\exp\left(\frac{\Delta V}{I_{sp}}\right) - 1 \right] = 1000 \left\{ \exp\left[\frac{11.32}{3100}\right] - 1 \right\} = 3.66 [kg]$

Gravity assist maneuvre (slingshot)

S/C may gain velocity in the sun – fixed system when passing close to a planet

Basically a 3 – body problem; approximation possible, when m <<M << $\rm M_{sun}$ Consider head – on elastic collision in a fixed coordinate system

$$Mu2 + mv2 = Mu12 + mv12$$
$$Mu - mv = Mu1 + mv1$$

$$v_1 = \frac{(1-\mu)v + 2u}{1+\mu} \cong v + 2u$$
$$\mu = m/M \ll 1$$

vectorial velocity addition at transfer between helocentric and planetocentric motions

Maximum energy gain in gravity assist at different planets (closest approach = r_p)

	Planetary velocity [km/s]	Mass [kg]	Solar distance [10 ⁶ km]	SOI radius [10 ⁶ km]	Equatorial radius [km]	v _{3,extr} [km/s]	∆V [km/s]	
Mercury	47.87	3.28E23	57.9	0.024	2493	2.99	11.96	5
Venus	35.02	4.87E24	108.2	0.169	6051	7.33	16.03	2
Earth	29.78	5.97E24	149.6	0.259	6378	7.90	15.33	4
Mars	24.13	6.42E23	228.0	0.130	3394	3.55	9.27	8
Jupiter	13.06	1.90E27	778.4	24.05	71400	42.1	23.45	1
Saturn	9.65	5.69E26	1425.5	24.10	60000	25.2	15.59	3
Uranus	6.80	8.68E25	2870.4	18.96	25650	15.0	10.10	6
Neptune	5.43	1.03E26	4501.1	32.38	24780	16.7	9.54	7
Pluto	4.7	1.27E22	5900	0.47	1150	0.86	2.00	9

CASSINI probe to Saturn and Titan

Liftoff from ground

$$\Delta V = \sqrt{2\Delta\varepsilon_o} = \sqrt{\frac{\mu}{R}} = \sqrt{\frac{3.98 \times 10^5}{6.73 \times 10^3}} \cong 7.69 \quad [km/s]$$

$$m_p = m_f \left[\exp\left(\frac{\Delta V}{I_{sp}}\right) - 1 \right] = 1 \left\{ \exp\left[\frac{(7690)}{(3100)}\right] - 1 \right\} = 10.95 \quad [kg / kg]$$

 ΔV , propellant consumption and mission time can be estimated when

- thrust direction is always tangential to trajectory (permanent attitude change!!)
- thrust << gravity force

Spiraling up

 $\left(\vec{r}\right)$

$$U(\vec{r}) = -\int_{r}^{\infty} \frac{F_{G}(\vec{r})}{m} d\vec{r} = -\int_{r}^{\infty} g(\vec{r}) d\vec{r} \longrightarrow \frac{dU}{d\vec{r}} = -g$$

$$\frac{d\varepsilon}{dt} = \frac{d}{dt} \left[\frac{\vec{v}^2}{2} + U(\vec{r}) \right] = \vec{v} \frac{d\vec{v}}{dt} + \frac{dU(\vec{r})}{d\vec{r}} \frac{d\vec{r}}{dt} = \vec{v} \left(\frac{d\vec{v}}{dt} - \vec{g}(\vec{r}) \right)$$

 $\frac{d\varepsilon}{dt} = \vec{v}\frac{\vec{T}}{m} = v\frac{T}{m}$

equation of motion for S/C of mass m, propelled by thrust T

Specific energy = spec. kinetic energy + + potential

potential energy and its gradient

time derivative of specific energy

acc. to assumption, always v II T; **>** inner product replaced by magnitudes

Spiraling up

$$\frac{d\varepsilon}{dt} = \vec{v}\frac{\vec{T}}{m} = v\frac{T}{m}$$

at every moment, trajectories closely resemble circles (acc. to assumption $T \rightarrow 0$)

$$v \approx \sqrt{\frac{\mu}{r}} \quad \varepsilon \approx -\frac{\mu}{2r} \quad \qquad \varepsilon = -\frac{\mu}{2a}$$
$$\frac{d\varepsilon}{dt} = \frac{d\varepsilon}{dr} \frac{dr}{dt} = +\frac{\mu}{2r^2} \frac{dr}{dt} = v \frac{T}{m} \approx \sqrt{\frac{\mu}{r}} \frac{T}{m}$$
$$\Delta V = \int_{r_0}^{t} \frac{T}{m} dt = \int_{r_0}^{r} \frac{\sqrt{\mu}}{2} \frac{dr}{r^{3/2}} = -\sqrt{\mu} \cdot \frac{1}{\sqrt{r}} \Big|_{r_0}^{r} = \sqrt{\frac{\mu}{r_0}} - \sqrt{\frac{\mu}{r}}$$
$$\Delta V = v_{c,0} - v_{c,r}$$
 thrusting ΔV is equal to difference of velocities in initial and final orbit

Space PropulsionSpiraling uptime required to spiral up from
$$r_0$$
 to r $merry required to spiral up from r_0 to r $merry$$$$$$$$$$$$$$$$$$$$$$$$$$

Spiraling up

$$\Delta V = v_{c,0} - v_{c,r}$$

$$\frac{\Delta V}{V_{c,0}} = 1 - \sqrt{\frac{r_0}{r}}$$

$$I_{sp} >> \Delta V$$

$$w = m_0 \frac{I_{sp}}{T} \left[1 - e^{-\Delta V / I_{sp}} \right] = m_f \frac{I_{sp}}{T} \left(e^{\Delta V / I_{sp}} - 1 \right) \rightarrow m_f \frac{\Delta V}{T}$$

$$m_p = m_f \left[\exp\left(\frac{\Delta V}{I_{sp}}\right) - 1 \right] \rightarrow m_f \frac{\Delta V}{I_{sp}}$$

$$m_{\infty} = 100 \cdot \left(e^{7809 \sqrt{2}/10^5} - 1 \right) \cong 11.7 \quad [kg]$$

$$\tau_{\infty} = 100 \frac{10^5}{5x10^{-3}} \left(e^{7809 \sqrt{2}/10^5} - 1 \right) \cong 5.1 \quad [y]$$

Example

Electric propulsion: T = 5 mN, $I_{sp} = 10^5$ m/s; Time and propellant mass required for spiraling up a 100 kg payload from 300 km LEO (v = 7730 m/s) to escape velocity?

Comparison of Hohmann and spiral transfer

Hohmann

spiral

Comparison of Hohmann and spiral transfer

$$\tau_{H} = \frac{1}{2} P_{tr} = \pi \sqrt{\frac{a^{3}}{\mu}} = \pi \sqrt{\frac{r_{1}^{3} (1+\rho)^{3}}{8\mu}}$$

depending only on orbital radii

$$au_{SP} \rightarrow m_f \frac{\Delta V}{T} = \frac{m_f}{T} \sqrt{\frac{\mu}{r_1}} \left(1 - \frac{1}{\sqrt{\rho}} \right)$$

also depending on S/C mass, thrust (and specific impulse)

$$V_r = \frac{dr_2}{d\tau} = \frac{T}{m_f} \sqrt{\frac{r_1}{\mu}} r_2$$

Attitude maneuvres

3 – axis controlled S/C

Thruster combinations to produce control forces and moments (HYPER, 2003) Option 1

Four clusters, each with 3 thrusters, are located at the corners of the S/C on opposite diagonals: group {1, 2, 3, 4} is pointing into +/- X group {11, 12, 13, 14} into +/- Y

group {21, 22, 23, 24} into +/- Z.

Thruster combinations to produce control forces and moments (HYPER, 2003) Option 2

Function	Primary Set	Secondary Set	Third Set
force in + X	11+ 13 + 15 + 17	11 + 15	
		+ Torque x (-) pair,	
		or	
		13 + 17 + Torque y (+) pair	
forma in V	12 + 14 + 18 + 10	10 + 18	
torce in - X	12 + 14 +10 + 18	12 + 10 + Torque x (-) pair	
		or	
		14 + 18	
		+ Torque x (+) pair	
force in + Y	2 + 3	5+8	2+3+5+8
force in - Y	6 + 7	1+4	1+4+6+7
force in + Z	4+5	2 + 7	4+5+2+7
force in - Z	1+8	3 + 6	1+8+3+6
torque about X (+)	1+5	3 + 7	
torque about X (-)	2 + 6	4 + 8	
torque about Y (+)	11 +14	16 + 17	
torque about Y (-)	12 + 13	15 + 18	
torque about Z (+)	11 + 13 + 16 + 18	11 + 18	
		+ Force z (+) pair,	
		or	
		13 + 16 + Eorop 7 () pair	
		+ Porce 2 (-) pair	
torque about Z (-)	12 + 14 + 15 + 17	12 + 17 + Forma = (+) as in	
		+ Porce z (+) pair, or	
		14 + 15	
		+ Force z (-) pair	

Attitude control thrusters on spin – stabilised S/C

Kinetics for rotational motion of S/C

rotational motion	Lin. analogon		
T = torque [N.m]	F = force [N]		
 <i>Θ</i> = angle of rotation of the spacecraft [rad] 	s = path [m]		
 ω = angular velocity of the spacecraft [rad/s] 	v = velocity [m/s]		
 α = angular acceleration of the spacecraft during a firing, [rad/s²] 	a = acceleration [m/s²]		
<pre>I_v = mass moment of inertia of the vehicle, [kg.m²]</pre>	m = mass [kg]		
$t_b = duration of the burn [s]$	t = time [s]		
H = change of spacecraft angular momentum during the firing, [kg.m ² /s]	p = momentum [m/s]		

rotational motion	Lin. analogon
$\Theta = \frac{1}{2} \alpha t_b^2$	$s = \frac{a}{2}t^2$
$\alpha = \frac{T}{I_{v}}$	$a = \frac{F}{m}$
$\omega = \alpha t_b$	v = at
$H = I_v \omega$	p = mv
$H = Tt_b$	$p = \int F dt \cong F t$

shows the advantage of a long moment arm. The maximum moment arm is constrained in a surprising way: by the inside diameter of the launch vehicle payload fairing

Launch vehicle Fairing i.d.[ft]

Atlas	9.6 or 12
Delta	8.3 or 10
Space Shuttle	15
Titan II	10
Titan III	13.1
Titan IV	16.7

one – axis maneuvre

Example 6: One-Axis Maneuver

Find the minimum time required for a spacecraft to perform a 90-deg turn about the z axis with two thrusters if the spacecraft has the following characteristics: Mass of S/C = 500 kg, Radius of S/C = 0.75 m \rightarrow Moment of inertia about the z axis $\cong (2/5)M_{S/C}L^2 = 112.5$ kg.m² Moment arm = 0.75 m Thrust of each engine = 10 N and $\Theta_m = \pi/2 = 1.5708$ rad

$$t_{\min} = \sqrt{\frac{2.\Theta_m I_v}{nFL}} = \sqrt{\frac{2*1.5708*112.5}{2*10*0.75}} = 4.854 \ s$$

How much propellant was consumed by the maneuver if $I_{sp} = 1900 \text{ m/s}$?

$$m_p = 2\frac{nFt_m}{I_{sp}} = \frac{2*2*10*4.854}{1900} = 0.102 \ kg$$

precession of spin axis

H_i ... initial angular momentum H_a ... applied angular momentum

$$\Phi/2 \approx \frac{H_a}{H_i} = \frac{nFLt_b}{I_y\omega}$$

nutation angle caused by application of single thrust pulse

Two pulses are required to precess the spin axis; both pulses are parallel to the spin axis. After the First pulse, the spin axis will continue to precess until a second pulse of equal magnitude and opposite direction is fired. The spin axis can be repositioned by selecting the timing of the second pulse. The first pulse is used to **cause nutation** at an angle of **one-half** the desired precession. The second pulse **stops the nutation** and provides the **remaining half** of the desired angle

Example 7: Precession of Spin Axis

What burn time, or pulse width, is required to precess a spacecraft spin axis by 3-deg (0.05236 rad) under the following conditions:

Thrust 10 N Moment arm = 0.5 mMoment of inertia 112.5 kg.m2 Spacecraft Spin rate 2 rpm (0.2094 rad/s) Specific impulse = 1900 m/s

$$t_b = \frac{\Phi I_v \omega}{2nFL} = \frac{0.05236*112.5*0.2094}{2*1*10*0.5} = 0.124 \ [s]$$

burn time of thruster to produce nutation angle $\Phi/2$

$$m_p = 2\frac{nFt_b}{I_{sp}} = \frac{2*1*10*0.124}{1900} = 0.0013 \ [kg] = 1.3 \ [g]$$

total propellant consumed by both burns

A limit cycle without external torque swings the spacecraft back and forth between preset angular limits. When the spacecraft drifts across one of the angular limits Θ_L , the attitude-control system fires a thruster pair for correction. The spacecraft rotation reverses and continues until the opposite angular limit is reached, at which time the opposite thruster pair is fired. It is important that the smallest possible impulse be used for the corrections because the impulse must be removed by the opposite thruster pair.

the limit settings $\pm \Theta_L$ are one-half of the coasting angle $\downarrow \Theta = 2 \Theta_L$ (neglecting small rotations during accel & brake)

each cycle includes two pulses; the propellant consumed per cycle is

Propellant consumption is small for low thrust, short burn time, and high specific impulse in pulsing operation. Pulsing engines are characterized by **minimum impulse bit I**_{min}

$$I_{\min} = (F.P_w)_{\min}$$

The minimum impulse bit is a characteristic of a given thruster/valve combination

pulsing properties of attitude – control thrusters

	Min thrust [mN]	Min impulse bit [mN.s]	Pulsing I _{sp} [m/s]
Cold-gas -Helium	50	5 - 10	800
Cold-gas-Nitrogen	50	5 - 10	500
Monopropellant - N ₂ H ₄	500	50 - 100	1200
Bipropellant - N ₂ O ₄ /MMH	10000	750 - 1500	1200

coast time through $2\Theta_L$

$$t_{cy} = t_c + 2P_W = \frac{4I_v \Theta_L}{nLI_{\min}} + 2P_W$$

 $\frac{4I_v\Theta_L}{nFLP}$

length of a cycle (from $+\Theta_L$ to $-\Theta_L$) if minimum impulse bits are used; *usually*, P_W can be neglected

propellant consumption per unit time

Example 8: Limit-Cycle Operation

A spacecraft with 112.5 kg.m² inertia uses 5N thruster pairs mounted at a radius of 0.5 m from the center of mass. For limit-cycle control to $\Theta_L = 0.5 \text{ deg} (0.008727 \text{ rad})$, what is the propellant consumption rate if I_{sp} is 1900 m/s, the pulse duration is 30 ms, and there are no external torques. ?

$$t_{cy} = 2P_w + \frac{4I_v \Theta_L}{nFLP_w} = 0.06 + \frac{4*112,5*0,008727}{2*5*0,5*0,030} = 0.06 + 26,181 = 26,241 \ [s]$$
time for 1 cycle
$$n_{p,cy} = 2\frac{nFP_w}{I_{sp}} = 2\frac{2*5*0.03}{1900} = 0.00032 \ [kg/cycle] = 0.32 \ [g/cycle]$$
propellant consumed per cycle
$$m_p = \frac{m_{p,cy}}{t_{cy}} = \frac{0,00032}{26,241} \cong 1.2x10^{-5} \ [kg/s] = 1.037 \ [kg/day]$$
average propellant consumption rate

Simplified equations for external torques

Disturbance	Туре	Influenced primarily by	Formula
Gravity gradient	Constant or cyclic, depending on vehicle orientation	Spacecraft geometry, Orbit altitude	$T_g = \frac{3\mu}{r^3} I_z - I_y \Theta \sim 4x10^{-5} \text{ [Nm]}$ where T_g is the max gravity torque; μ is the Earth's gravity constant (398,600 km^3ls^2), r the orbit radius, Θ the max deviation of the z axis from vertical in radians; I_z and I_y are moments of inertia about z and y (or x , if smaller) axes.
Solar radiation	Constant force but cyclic on Earth-oriented vehicles	Spacecraft geometry, Spacecraft surface area	The worst-case solar radiation torque $T_{sp} = P_s A_s L_s (1+q) \cos i \qquad \sim 7 \times 10^{-7} \text{ [Nm]}$ is due to a specularly reflective surface, where P _s is the solar constant, 4.617 $\times 10^{-6} \text{ N/m}^2$; A_s is the area of the surface, L_s the center of pressure to center of mass offset, i the angle of incidence of the sun, and q the reflectance factor that ranges from 0 to 1; q = 0.6 is a good estimate
Magnetic field	Cyclic	Orbit altitude, Residual spacecraft magnetic dipole, Orbit inclination	$T_m = DB$ where T_m is the magnetic torque on the spacecraft, <i>D</i> the residual dipole moment of the vehicle in A.m ² , and B the Earth's magnetic field in Tesla. <i>B</i> can he approximated as $2M/r^3$ for a polar orbit to half that at the equator. M is the magnetic moment, 8 x 10 ²⁵ emu at Earth, and r is radius from dipole (Earth) center to spacecraft in centimeters
Aerodynamic	Constant for Earth-oriented vehicle in circular orbit	Orbit altitude, Spacecraft configuration	$\begin{split} & T_a = \sum F_i L_i \\ & T_a \text{ is the summation of the forces } F_i \text{ on each of the exposed surface areas} \\ & \text{times the moment arm } L_i \text{ to the center of each surface to the center of mass,} \\ & \text{where} \\ & F = \rho C_d A V^2 / 2 \\ & \text{with } F \text{ the force, } C_d \text{ the drag coefficient (usually between 2.0 and 2.5), p the} \\ & \text{atmospheric density, } A \text{ the surface area, and } V \text{ the spacecraft velocity.} \end{split}$

dir. of ext. torque

one-sided limit cycle

with an external torque on the spacecraft, rotation occurs until a limit line is reached and a thruster pair is fired for correction

total angular momentum H supplied by the propulsion system exactly equals the momentum induced by the external torque T_x during mission time t_m ; \overline{F} is time – averaged thrust

propellant mass required to compensate for the external torque

$$H = T_x t_m = \overline{F} t_m$$

$$m_p = \frac{n\overline{F}}{I_{sp}}t_m = \frac{n\overline{F}L}{LI_{sp}}t_m = \frac{T_x}{LI_{sp}}t_m$$

One sided limit cycle, ct'd

Space Propulsion

S/C rotation is accelerated by from zero speed at the extreme limit $+\Theta_{L}$ (point 1) through an angular path of < 2 Θ_{L} with an angular acceleration α_{x} , generated by the **external torque** only. The opposite limit angle will be reached after an angular interval $2\Theta_{L}$ and a "pass" time t_{p} (approximately equal to half the cycle time t_{cy}).

$$2\Theta_L = \frac{1}{2}\alpha_x t_p^2 \qquad \longrightarrow \qquad t_{cy} = -2t_p = 4\sqrt{\frac{\Theta_L}{\alpha_x}} = 4\sqrt{\frac{\Theta_L I_v}{T_x}}$$

angular speed ω_L , at the end of the cycle, at $-\Theta_L$ (at point 2) is

Now the thrusters are firing, producing a thrusting angular acceleration α . They reduce this angular speed to 0 (at the turning point 3) after a burning time of P_W/2

From that follows the *impulse per thruster*, required to turn around the angular speed of the S/C, so that it moves against external torque up to an angle of not larger than Θ_L

If minimum impulse bits I_{min} are used, the rotation limit must be wider than a minimum Θ_L , in order to avoid thrusters being fired in the direction of external torque. This would cause excessive propellant consumption.

 $\omega_L = \alpha_x t_{cy} / 2 = 2$

 $\omega_L = \alpha P_W / 2 = \frac{n L F}{2L}$

 $FP_W \leq \frac{4}{\pi I} \sqrt{T_x I_y \Theta_y}$

forced limit cycle

A forced limit cycle occurs when thrusters are fired in the direction of the external torque; that is, when the condition

$$\Theta_L > \frac{n^2 L^2 I_{\min}^2}{16 I_v T_x}$$

is not met

propellant consumed in a forced limit cycle is

$$m_p = \frac{I_v R^2}{L \Theta_L I_{sp}} t_m$$

R [Hz] = 1/t_{cy} = limit-cycle rate of the system t_m [s] = mission duration

R can only be calculated numerically from a higher order equation containing the parameters I_{min} , P_W , T_x , I_v , L, Θ_L .

reaction wheel maneuvres

To perform a rotational maneuver with a reaction wheel, the flywheel is accelerated by a motor. The spacecraft accelerates in the opposite direction.

	A S/C can be rotated by an angle Θ by application of a torque T for time interval t		$\Theta = \frac{Tt^2}{2L}$
			V
this torque can be supplied by an accelerating flywheel; angular acceleration $\alpha_{\rm W}$ is supplied by a motor			$T = \alpha_w I_w$
			. <u>↓</u>
		The resulting S/C rotation angle is	$\Theta = \frac{\alpha_W I_W t^2}{1}$
			$\sim 2I_v$
		and the increase in wheel speed:	$\Delta \omega_{w} = \alpha_{w} t$

The S/C can be returned to its original position by applying the opposite torque to the flywheel; the net increase in flywheel rotational speed then is 0 (neglecting friction). Due to unbalanced torques however, the flywheel eventually will reach its upper angular speed limit and then is not fully available for maneuvering any more. To become maneuverable again it must be **"unloaded**", i.e. its angular speed must be brought to 0 again.

	total angular mome	entum of a fully loaded wheel is	$H = I_w \omega_{w, \max}$
to unolad the applied to it b produce net r momentum m	wheel, a torque in the motor for a cer otation of the S/C, a nust be supplied by t	H = Tt = nFLt	
		time required for upleading is	
		time required for unloading is	$t = \frac{H}{nFL} = \frac{T_w \mathcal{O}_{w,\text{max}}}{nFL}$
	propellar	nt consumption for unloading is	$m_p = \frac{nF.t}{L} \cdot \frac{L}{L} = \frac{I_w \omega_w}{LL}$
			I sp L LI sp

Example 9: Reaction Wheel Unloading

How much propellant does it take to unload one of the Magellan wheels, and how long does it take? (JPL Venus Mission, 1994)

The Magellan wheel characteristics are: maximum momentum = 27 N-m-s

maximum wheel speed = 4000 rpm = 418.879 rad/s

The thruster pair to be used has the following characteristics: thrust = 1 N; moment arm = 2m pulsing specific impulse 1500 m/s.

the propellant mass required to unload it is

$$m_p = \frac{H}{LI_{sp}} = \frac{27}{2*1500} = 0.009 \ [kg]$$

engine burn time required to unload is

$$t = \frac{H}{nFL} = \frac{27}{2*1*2} = 6.75 \ [s]$$

