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To every action there is an equal and opposite reaction3.

The rate of change of momentum of the body is proportional to the 
impressed force and takes place in the direction in which the force acts.

2.

Every body continues in its state of rest or of uniform motion in a 
straight line except insofar as it is compelled to change that state by an 
external impressed force

1.

,

dp / dt = F
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Every particle of matter attracts every other particle of matter with a force 
directly proportional to the product of the masses and inversely
proportional to the square of the distance between them.
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The square of the period of revolution is proportional to the cube of the 
semimajor axis.
That is, T2 = const x a3

3.

Areas swept out by the radius vector from the sun to a planet in equal 
times are equal

2.

The planets move in ellipses with the sun at one focus1.
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Circular orbit
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VmrH ×=

angular momentum
around point C

Gravitational trajectories

M … torque around C

Assumption:
Central force: F II r 0==× MFr 0== M

dt
Hd .constVrmH =×=

→ trajectory remains in same plane perp. to H 
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Gravitational trajectories

constrVVrmHh ==×== φsin/ specific angular momentum = const

( ) rdtVd /.sinφθ =

( ) dtrVrdrdA .sin
2
1.

2
1 φθ =≅

consthrV
dt
dA

===
2

sin
2
1 φ 2nd Kepler‘s law: areal

velocity is constant

Plane trajectories and constant areal velocity follow from
central force requirement only; force field must not be
1/r2 and not even conservative
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d
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Gravitational trajectories

Assumption:  conservative 1/r2 force field

conservation of total energy; ε is specific total 
energy; 
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∫
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Gravitational trajectories

( )Ch
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when θ is counted from minimum r, 
then cos = -1
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prFrom geometry:

Is equation of conical section in 
polar coordinates (r,θ) when origin
is in focal point; p is parameter and 
ε numerical excentricity of conic
section;
ε > 1 …hyperbola
ε = 1 …parabola
ε < 1 …ellipse
ε = 0 … circle

Trajectories under influence of gravity of 
the sun are conical sections with the sun
in one focal point

1st Kepler
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Gravitational trajectories
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a
paaabP

dt
dA 222 1 πεππ =−==

from kinetics:
dA/dt = h/2

2
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μ
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3rd Kepler
But also: period of elliptical trajectory only
dependent on semimajor axis

In case of closed trajectory ( ellipse) product
of constant areal velocity and period is equal
to area of ellipse

from analyt. geometry

μ

2hp =
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The orbit of a body is completely determined, when we know at a given point

- the radius – vector from the central body
- the velocity vector

Or, equivalently r, V and included angle α
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The final parameter is the true anomaly as determined by
the angle the craft is from perihelion of the new orbit (see
ellipse equation in Section 2.3.1) 

9

We now know the size and shape of the orbit and can

determine the extent of the orbit from (EQ 16) and (EQ 18)

8

The other method of determining areal velocity gives us the
eccentricity of the orbit, by taking the ellipse area as Aell = 
πa2(1-e2)1/2 

7

The areal velocity is know from the initial conditions
(velocity and position) of the spacecraft; α being the angle 
between radiusvector and S/C direction

6

The period of the orbit is given by Kepler's third law: 5

This then gives the circular velocity of the orbit (EQ 3)
4

The energy per mass of the spacecraft determines the
orbits semi-major axis (EQ 11): 

3

The total energy per mass of the orbit is constant so by
evaluating the kinetic and gravitational potentialenergy at 
one point in the orbit (EQ 10) we obtain
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Elliptical orbits passing through same point with identical 
velocities into different directions
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f
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Reaction propulsion

Tsiolkovski equation

momentum conservation
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since direction of  ve (exhaust velocity) is opposite to velocity gain ΔV, the ratio
- ΔV/ve is always positive; therefore we can express the exponent as ΔV/ IveI

• initial mass increases exponentially with ΔV (@ mf = const.)
• decreases exponentially with ve
• final mass, which can be brought into orbit with ΔV de-
…creases with increasing ΔV and increases with ve

Tsiolkovsky equation
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Thrust

Thrust is the force propelling a rocket; it is the reaction force to the force accelerating
the exhaust particles. We consider the exhaust consisting of N identical particles
(gas, ions, electrons, stones,…) of mass m

( ) ee VmVmNp
dt
dNpN

dt
d

dt
dPT ...

••

=⎟
⎠
⎞

⎜
⎝
⎛====

mass flow [kg/s]

exhaust velocity [m/s]

thrust [N]T
V
m

e

•
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Total impulse

Total impulse is the total momentum gained during the burn time tb of a thruster

].[
0

sNTdtI
tb

∫=

When thrust is constant over time, or at least during thruster – on time intervals, 
total impulse can be written as

τ.TI =

peee mVdmVdtV
dt
dmTdtI .

000

==⎟
⎠
⎞

⎜
⎝
⎛== ∫∫∫

τττ

mp … propellant mass used during mission time τ
Ve … exhaust velocity, assumed to be constant during mission

definition
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Specific impulse

dm
dpI sp =

what is the momentum produced per unit of 
mass expelled?

The higher this ratio, the higher is the velocity
gain of a rocket upon exhaustion of ist fuel
mass; Isp is an important quality
parameter
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/ sm
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dtdm
dtdpI sp ••
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===
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m mass flow [kg/s]

( ) ]/[. smV
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Vmd
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dpI e

e
sp ===

Ve exhaust velocity, assumed to be constant

definition
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jet power

definition

jet power is the kinetic energy, emitted per time unit from a S/C
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]/[ NW
T
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P jet
sp =

specific power

specific power is the beam power Pjet, necessary to produce a unit of thrust
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specific power[W/N], [m/s]

Tsiolkovsky equ.
(rocket equ.)

[1]

specific impulse[m/s]

jet power[W]

total impulse[N.s]

thrust[N]spImT .
•

=

•===
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dpI esp
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I
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these purely mechanical relationships are valid independent of 
the methods used to accelerate exhaust particles
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The staging principle

nspn

sp

sp

RIV

RIV

RIV

ln
....

ln
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22

11

=Δ

=Δ

=Δ( )
jfij mmR /=

initial / final mass ratio
of jth stage

)....ln( 21 nsp RRRIV =Δ

velocity gains of 
individual stages

total velocity gain
(of final stage)
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The staging principle

)....ln( 21 nsp RRRIV =Δ

when the rocket motors of all stages have the same specific impulse Isp, 
the velocity difference of the final stage with respect to the initial velocity is

when the mass ratios of all stages are identical (Rj = R)

RInRIV sp
n

sp ln..)ln( ==Δ
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• a fixed total mass M of propellant is available for
….acceleration of a payload of mass mL
• compare the velocity gains, when the propellant is
….consumed in a single – stage or a multi – stage rocket

Assumptions: 
• initial / final mass ratios identical = R for all stages
• mass of supporting structure in each stage is same fraction φ
….of propellant mass of respective stage (φ = „tankage factor“)
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propellant mass for ith stage; 
Si … sum of propellant masses m1,

m2, …, mi
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RInV sp ln..=Δ

Single- and multi – stage
rockets using the same
amount of propellant to 
accelerate same payload
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Check
for tankage factor φ 0, we have rockets consisting of payload
and fuel only and single- and „multistage“ rockets with same
payload and fuel masses must have the same ΔV

( ) multispnspnspgle VRnI
R

IIV Δ==⎥⎦
⎤

⎢⎣
⎡→⎥

⎦

⎤
⎢
⎣

⎡

++
+

=Δ −− )ln(1ln
1
1ln.sin ψφ

φ



Space Propulsion

Repositioning the spacecraft axesManeuvering

Remove stored momentumReaction wheel unloading

Change attitudesAttitude changes

Maintain an attitudeAttitude control

Remove vector errorsThrust vector control

(RotationaI velocity change)Attitude Control
Change constellation positionRepositioning

Maintain constellation positionStationkeeping

Remove Iaunch vehicle errorsOrbit trim

Change orbital plane, other orbit
parameters remaining constant

Plane changes

Convert one orbit to anotherOrbit changes

(Translational velocity change)Mission design
DescriptionTask

Mission Design and Mission Design and AttitudeAttitude ControlControl
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coplanar orbit changes

αcos2222
fifi VVVVV −+=Δ

generalised coplanar 
maneuvre

changing a circular orbit to a 
coplanar elliptical orbit

the transfer can be made at any intersection of two orbits.
the least velocity change is necessary when the orbits are tangent and α is
zero

ΔV is smallest when this
term is largest cosα = 1
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Example 1: Simple Coplanar Orbit Change
Consider an initially circular low Earth orbit at 300-km altitude. What velocity increase

would be required to produce an elliptical orbit 300 x 3000 km in altitude?  What would be the 
fuel consumption for a 750 kg (empty) S/C if Isp = 3100 m/s ?

The gravity parameter of Earth is μ=398,600.4 km3/s2 Radius of Earth is ≈ R = 6387 km

skm
r

V /726.7
)14.6378300(

4.600,398
=

+
==

μvelocity on initial circular orbit:

][8028
2

)63783000()6378300(
2

km
rr

a pa =
+++

=
+

=semimajor axis of final elliptical orbit:

skm
ar

Vp /350.8
8028
600,398

6678
)600,398(22

=−=−=
μμ

velocity at periapsis of final orbit:

skmVVV p /624.0726.7350.8 =−=−=Δvelocity change =

Velocity changes, made at periapsis, change apoapsis radius but not periapsis radius, and vice 
versa; the radius at which the velocity is changed remains unchanged. As you would expect, the 
plane of the orbit in inertial space does not change as velocity along the orbit is changed. Orbital 
changes are a reversible process.
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⎛ Δ
=fuel consumption
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finite burn losses

thrust vector is held inertially fixed during the burn
orbital elements change continuously during burn
angle between thrust and velocity increases during burn
at constant thrust, acceleration in flight direction decreases during burn
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Hohmann transfer: minimum energy transfer
between circular orbits

transfer orbit insertion
orbit circularisation

transfer orbit:

periapsis radius = radius of initial orbit
apoapsis radius = radius of final orbit

r
V μ
=

rf > ri Vf < Vi

nevertheless all maneuvers
are accelerating
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]/[78.7
2006387
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skm

ar
V
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+
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μμ

Example 3:  Hohman transfer from circular Earth orbit (altitude = 200 km) to geostationary 
orbit (r = 42219 km); what is fuel consumption to bring a 1 t payload to GEO with a specific 
impulse of 3100 [m/s]?
Velocity in LEO:

Velocity in GEO similarly is

Perigee velocity in transfer ellipse is:

Example 3, cont‘d

Velocity in LEO:

Semimajor axis of transfer ellipse is

3.07 [km/s]
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The efficiency of the Hohmann transfer comes from the fact that the two 
velocity changes are made at points of tangency between the trajectories.

Apogee velocity in transfer ellipse is ]/[60.1
24403
398600

42219
398600*22 skm

ar
V

a
a =−=−=

μμ

]/[44.278.722.10 skmVi =−=Δ

]/[47.160.107.3 skmVcirc =−=Δ

]/[91.347.144.2 skmVtot =+=Δ
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⎛ Δ
=

Velocity increase in transfer orbit insertion:

Velocity increase at circularization:

Adding up to a total velocity increase of

Fuel consumption is:
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plane change
maneuver

2
sin2 α
iVV =Δ without velocity change

Plane changes are expensive on a propellant basis. 
A 10-deg plane change in low Earth orbit would.require a velocity change of about 1.4 km/s. 
For a 500 kg spacecraft, this plane change would require 292 kg of propellant, if one assumes an Isp of 3100  m/s

The equation shows that it is important to change planes through the 
smallest possible angle and at the lowest possible velocity. 

The lowest possible velocity occurs at the longest radius, that is, at apoapsis.
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Combined maneuver: ΔV1-2 = 1.831 km/s

For separate maneuvers,
plane change maneuver: ΔV1 = 0.791 km/s; 
circularization maneuver: ΔV2 = 1.469 km/s; total ΔV = 2.260 km/s.
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Example 5: Repositioning

Consider a geosynchronous 1t  spacecraft that is required to reposition by 2-deg, counter to the 
velocity vector (westward), in a maneuvering time of one sidereal day (one orbit). What is the 
fuel consumption for that maneuver, assuming an Isp of 3100 m/s? 

S/C moves in reposition ellipse
„placeholder“ S/C orbits in GEO

example 5, cont‘d

Δφ
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The elements of a geosynchronous orbit are
r = 42,164.17 km (circular)
P = 86,164.09 s
V = 3.07466 km/s

][689.478
360

09.164,86*2
360

0

sPP ==
Δ

=Δ
ϕΔP is equal to the time required for 2 deg 

of motion on a geosynchronous orbit

The period for the spacecraft on the 
elliptical reposition orbit is

P = 86,164.09 + 478.689 = 86,642.78    [s]

semimajor axis of the reposition orbit ][320,42
4

)600,398()78.642,86(
4

3
2

2
3

2

2

kmPa ===
ππ

μ

velocity at periapsis of an elliptical orbit 
with semimajor axis a

]/[08032.3
42320
600,398

42164
)600,398(22 skm

ar
V =−=−=

μμ

velocity change to place the spacecraft 
on the reposition ellipse

3.08032km/s - 3.07466km/s = 5.66 m/s

Repositioning, cont‘d

][66.31
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32.11exp10001exp kg
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⎛ Δ
=Propellant consumption under  

assumption of negligible mass change 

The same velocity change (in the opposite direction
is necessary for recirculation of repositioning orbit
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Gravity assist maneuvre (slingshot)

S/C may gain velocity in the sun – fixed system when
passing close to a planet
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Basically a 3 – body problem; approximation possible, when m <<M << Msun
Consider head – on elastic collision in a fixed coordinate system

11

2
1

2
1

22

mvMumvMu
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SPPSOI MMrr /≈22 // PSSOIP rMrM ≅
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vectorial velocity addition
at transfer between
helocentric and 
planetocentric motions
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Gravity assist at Jupiter
vP = 13.1 km/s

passage behind planet passage in front of planet

gravity assist at Jupiter can boost S/C velocity to hyperbolic orbit so that it can
leave solar system (ΔV > (21/2-1) vP = 5.4 km/s)
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92.000.8611500.4759001.27E224.7Pluto

79.5416.72478032.384501.11.03E265.43Neptune

610.1015.02565018.962870.48.68E256.80Uranus

315.5925.26000024.101425.55.69E269.65Saturn

123.4542.17140024.05778.41.90E2713.06Jupiter

89.273.5533940.130228.06.42E2324.13Mars

415.337.9063780.259149.65.97E2429.78Earth

216.037.3360510.169108.24.87E2435.02Venus

511.962.9924930.02457.93.28E2347.87Mercury

ΔV
[km/s]

v3,extr
[km/s]

Equatorial
radius
[km]

SOI 
radius

[106 km]

Solar 
distance 
[106 km]

Mass
[kg]

Planetary
velocity
[km/s]

Maximum energy gain in gravity assist at different planets
(closest approach = rP)
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CASSINI probe to Saturn and Titan

Hohmann transfer

15.7
6

gravity assists

2
6.7

total ΔV  [km/s]
flight time [y]
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Liftoff from ground

.
2

2

const
r

v
==− εμ energy conservation

ε = E/m … specific energy

Rpgr
μεε −== specific energy at rest on Earth‘s surface

v = 0, r = R (purely potential energy)

R
V μ
=

velocity in circular orbit with
Radius R

Rk 2,0
με = spec. kinetic energy in circular orbit

at Earth‘s surface, r =a = R

total specific energy in orbit near
Earth‘s surface

RRRO 22
μμμε =⎟

⎠
⎞

⎜
⎝
⎛−−−=Δ spec. energy for liftoff from rest into

circular orbit near Earth‘s surface

]/[69.7
1073.6
1098.32 3

5

skm
x
x

R
V O ≅==Δ=Δ

με
ΔV necessary for liftoff into
circular orbit near Earth‘s surface

RRRO 22
μμμε −=−=
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]/[95.101
)3100(
)7690(exp11exp kgkg
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⎭
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x
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V O ≅==Δ=Δ

με

Liftoff from ground



Space Propulsion

Spiraling up

ΔV, propellant consumption and mission time can be estimated when

• thrust direction is always tangential to trajectory (permanent attitude change!!)
• thrust << gravity force
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Spiraling up

( )rUv
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⎣
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vdv
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rdU
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vdvrUv

dt
d
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d

2

2ε

g
m
T

dt
vd

+=

m
Tv

m
Tv

dt
d

==
ε

equation of motion for S/C of mass m, 
propelled by thrust T

Specific energy = spec. kinetic energy + 
+ potential 

potential energy and its gradient

time derivative of specific energy

acc. to assumption, always v II T;       inner 
product replaced by magnitudes
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m
Tv

m
Tv

dt
d

==
ε

Spiraling up

at every moment, trajectories closely resemble circles (acc. to assumption T 0)

rcc vvV ,0, −=Δ

∫∫ −=−===Δ
r

r

r

r

t

t rrrr
drdt

m
TV

0 00
2/3

0

1.
2

μμμ
μ

thrusting ΔV is equal to difference
of velocities in initial and final orbit

m
T

rm
Tv

dt
dr

rdt
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d

dt
d μμεε
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r
v μ
≅

r2
με −≅
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Spiraling up

time required to spiral up from r0 to r

spITm /=
•

assumption: T = const. dm/dt = const. ( )00 ttmmm −−=
•
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rcc vvV ,0, −=Δ

r
r

v
V
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0

0,

1−=
Δ
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T
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T
I

me
T
I
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IspVsp
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IspVsp Δ

→−=−= ΔΔ− 11 //
0τ

Spiraling up

Example
Electric propulsion: T = 5 mN, Isp = 105 m/s;
Time and propellant mass required for spiraling
up a 100 kg payload from 300 km LEO (v = 
7730 m/s) to escape velocity?

( ) ][7.111.100
510/27809 kgem ≅−=∞

Isp >> ΔV

( ) ][1.51
105
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510/27809
3
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⎡
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Comparison of Hohmann and spiral transfer
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Comparison of Hohmann and spiral transfer
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Attitude maneuvres

3 – axis controlled S/C
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Four clusters, each with 3 thrusters, are located at the corners of the S/C 
on opposite diagonals:
group {1, 2, 3, 4} is pointing into +/- X
group {11, 12, 13, 14} into +/- Y
group {21, 22, 23, 24} into +/- Z.

Thruster combinations to produce control forces and moments (HYPER, 2003)
Option 1
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Thruster combinations to produce control forces and moments (HYPER, 2003)
Option 2
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Attitude control thrusters on spin – stabilised S/C
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2

2
1

btα=Θ 2

2
tas =

vI
T

=α
m
Fa =

btαω = atv =

ωvIH = mvp =

bTtH = ∫ ≅= FtFdtp

p  =  momentum 
[m/s]

H = change of spacecraft 
angular momentum during 
the firing, [kg.m2/s]

t  =  time [s]tb = duration of the burn  [s]

m  =  mass [kg]Iv = mass moment of inertia of 
the vehicle, [kg.m2]

a  =  acceleration 
[m/s2]

α = angular acceleration of the 
spacecraft during a firing, 
[rad/s2 ]

v  =  velocity [m/s]ω = angular velocity of the 
spacecraft   [rad/s]

s  =  path [m]Θ = angle of rotation of the 
spacecraft   [rad]

F = force [N]T = torque [N.m]

Lin. analogonrotational motion rotational motion Lin. analogon

Kinetics for rotational motion of S/C
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T  =  nFLtorque, produced by n thrusters, mounted at torque arm L, 
firing with equal thrust F

during the burn, the angular acceleration of the spacecraft is 
vI

nFL
=α

v

b

I
nFLt
2

2

=Θ
at shut down, the vehicle will have turned by 2

2
tas =

m
Fa =

at shutdown, the spacecraft is left rotating at angular velocity
b

v
t

I
nFL

=ω
tav .=

angular momentum produced by a single firing is H = Ttb ∫= Fdtp

propellant consumed during the burn is
spsp

b
p LI

H
I
nFt

m ==

Linear analogon
Kinetics for rotational motion of S/C

F

•

= mFIsp /
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shows the advantage of a long moment arm. The maximum moment 
arm is constrained in a surprising way: by the inside diameter of the 

launch vehicle payload fairingspsp

b
p LI

H
I
nFt

m ==

Launch vehicle Fairing i.d.[ft]

Atlas 9.6 or 12
Delta 8.3 or 10
Space Shuttle                15
Titan ll 10
Titan III 13.1
Titan IV 16.7
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one – axis maneuvre
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Θm = Θ (accelerating) + Θ (coasting) + Θ (braking)total angle of rotation is

rotation during coasting is ctω=Θ

cb
v

tt
I
nFL

=Θthe coasting rotation angle is
b

v
t

I
nFL

=ω

( )cbb
v

cb
v

b
v

m ttt
I
nFLtt

I
nFLt

I
nFL

+=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Θ 22 2

2
2total rotation during acceleration, coasting and braking is

v

b

I
nFLt
2

2

=Θ

maneuver time is tm = tC + 2tb

minimum rotation time is a fully powered 

maneuver with zero coast time nFL
I

tt vm
b

Θ
==

.2
2min

thrust level required for each thruster
at given minimum rotation time 2

min

2
nLt
I

F vmΘ
=

spsp

b
p I

nFt
I
nFt

m min2 ==propellant required for a one-axis 

maneuver is twice the single burn consumption spsp

b
p LI

H
I
nFt

m ==

1 – axis maneuvre, cont‘d

accel.



Space Propulsion

s
nFL
I

t vm 854.4
75.0*10*2
5.112*5708.1*2.2

min ==
Θ

=

kg
I
nFt

m
sp

m
p 102.0

1900
854.4*10*2*22 ===

Example 6: One-Axis Maneuver
Find the minimum time required for a spacecraft to perform a 90-deg turn about the z axis 
with two thrusters if the spacecraft has the following characteristics:
Mass of S/C = 500 kg,
Radius of S/C = 0.75 m

Moment of inertia about the z axis ≅(2/5)MS/C.L2 = 112.5 kg.m2

Moment arm = 0.75 m
Thrust of each engine = 10 N
and
Θm = π/2 = 1.5708 rad

How much propellant was consumed by the maneuver if  Isp = 1900 m/s ?
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precession of spin axis

Two pulses are required to precess the spin axis; both pulses are parallel to the spin axis. After the
First pulse, the spin axis will continue to precess until a second pulse of equal magnitude and opposite 
direction is fired. The spin axis can be repositioned by selecting the timing of the second pulse.
The first pulse is used to cause nutation at an angle of one-half the desired precession. The second 
pulse stops the nutation and provides the remaining half of the desired angle

ωy

b

i

a

I
nFLt

H
H

=≈Φ 2/

Hi … initial angular momentum
Ha … applied angular momentum

nutation angle caused by
application of single thrust pulse
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Example 7: Precession of Spin Axis
What burn time, or pulse width, is required to precess a spacecraft spin axis by 3-deg (0.05236 rad) 
under the following conditions:

Thrust  10 N Spacecraft Spin rate  2 rpm (0.2094 rad/s)
Moment arm = 0.5 m Specific impulse = 1900 m/s
Moment of inertia  112.5 kg.m2

][124.0
5.0*10*1*2
2094.0*5.112*05236.0

2
s

nFL
It v

b ==
Φ

=
ω burn time of thruster to produce nutation

angle Φ/2

][3.1][0013.0
1900

124.0*10*1*22 gkg
I
nFtm
sp

b
p ==== total propellant consumed by both burns
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limit cycle without external torque

A limit cycle without external torque swings the spacecraft back and forth between preset 
angular limits. When the spacecraft drifts across one of the angular limits ΘL , the attitude-control 
system fires a thruster pair for correction. The spacecraft rotation reverses and continues until the 
opposite angular limit is reached, at which time the opposite thruster pair is fired. It is important
that the smallest possible impulse be used for the corrections because the impulse must be 

removed by the opposite thruster pair.

cont‘d
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Θ
22

2
wcw

v

tot
PtP

I
nFL

limit cycle cont‘d

total angle of rotation Θ ↓ replacing 2tb Pw

cw
v

cb
v

L tP
I
nFLtt

I
nFL

42
1

==Θ the limit settings + ΘL are one-half of the coasting angle ↓
Θ = 2 ΘL (neglecting small rotations during accel & brake)

sp

w
cycp I

nFPm 2, = each cycle includes two pulses; 
the propellant consumed per cycle is

Propellant consumption is small for low thrust, short burn time, and high specific impulse 
in pulsing operation. Pulsing engines are characterized by minimum impulse bit Imin

Imin = (F.Pw)min

The minimum impulse bit is a characteristic of a given thruster/valve combination

cont‘d

(EQ 86)

cb
v

tt
I
nFL

=Θ
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limit cycle cont‘d

1200750 - 150010000Bipropellant -
N2O4/MMH

120050 - 100500Monopropellant -
N2H4

5005 - 1050CoId-gas-Nitrogen

8005 - 1050Cold-gas -Helium

Pulsing 
Isp

[m/s]

Min impulse bit
[mN.s]

Min thrust
[mN]

w

Lv
c nFLP

I
t

Θ
=
4

pulsing properties of attitude – control thrusters

coast time through 2ΘL

length of a cycle (from +ΘL to -ΘL ) if minimum impulse bits 
are used; usually, PW can be neglected

Lvspcy

cycp
p

II
LIn

t
m

m
Θ

=
•

2
~

2
min

2
, propellant consumption per unit time

w
Lv

Wccy P
nLI
I

Ptt 2
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2
min

+
Θ

=+=

b
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nFL

=ω
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w
cycp I

nFPm 2, =
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Example 8:   Limit-Cycle Operation

A spacecraft with 112.5 kg.m2 inertia uses 5N  thruster pairs mounted at a radius of 0.5 m from 
the center of mass. For limit-cycle control to ΘL = 0.5 deg (0.008727 rad), what is the propellant
consumption rate if  Isp is 1900 m/s, the pulse duration is 30 ms, and there are no external 
torques. ? 

]/[32,0]/[00032.0
1900

03.0*5*222, cyclegcyclekg
I
nFP

m
sp

w
cyp ==== propellant consumed per cycle

]/[037.1]/[102.1
241,26

00032,0 5, daykgskgx
t
m

m
cy

cyp
p =≅== −

•

][241,26181,2606,0
030,0*5,0*5*2

008727,0*5,112*406.042 s
nFLP
IPt

w

Lv
wcy =+=+=

Θ
+= time for 1 cycle

average propellant 
consumption rate 
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iqLAPT ssssp cos)1( +=

∑= iia LFT

Simplified equations for external torques

Ta is the summation of the forces Fi on each of the exposed surface areas 
times the moment arm Li to the center of each surface to the center of mass, 
where
F = ρCdAV2/2
with F the force, Cd the drag coefficient (usually between 2.0 and 2.5), p the 
atmospheric density, A the surface area, and V the spacecraft velocity.

Orbit altitude, 
Spacecraft 
configuration

Constant for 
Earth-oriented 
vehicle in 
circular orbit

Aerodynamic

where Tm is the magnetic torque on the spacecraft, D the residual dipole 
moment of the vehicle in A.m2, and B the Earth's magnetic field in Tesla. B 
can he approximated as2M/r3 for a polar orbit to half that at the equator. M is 
the magnetic moment, 8 x 1025 emu at Earth, and r is radius from dipole 
(Earth) center to spacecraft in centimeters

Orbit altitude, 
Residual spacecraft 
magnetic dipole, 
Orbit inclination

CyclicMagnetic field

The worst-case solar radiation torque

is due to a specularly reflective surface, where PS is the solar constant, 4.617 
x 10-6 N/m2; As is the area of the surface, Ls the center of pressure to center 
of mass offset, i the angle of incidence of the sun, and q the reflectance factor 
that ranges from 0 to 1; q = 0.6 is a good estimate

Spacecraft 
geometry, 
Spacecraft surface 
area

Constant force 
but cyclic on 
Earth-oriented 
vehicles

Solar radiation

where Tg is the max gravity torque; µ is the Earth's gravity constant (398,600 
km3Is2), r  the orbit radius, Θ the max deviation of the z axis from vertical in 
radians;Iz and Iy are moments of inertia about z and y (or x, if smaller) axes.

Spacecraft 
geometry, Orbit 
altitude

Constant or 
cyclic, 
depending on 
vehicle 
orientation

Gravity 
gradient

FormulaInfluenced 
primarily by

TypeDisturbance

Θ−= yzg II
r

T 3
3μ

iqLAPT ssssp cos)1( +=

~ 4x10-5 [Nm]

~ 7x10-7 [Nm]

∑= iia LFT

DBTm =
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one-sided limit cycle

with an external torque on the spacecraft, 
rotation occurs until a limit line is reached 
and a thruster pair is fired for correction

total angular momentum H supplied by the 
propulsion system exactly equals the momentum 
induced by the external torque Tx during mission
time tm;        is time – averaged thrust

propellant mass required to compensate for the 
external torque 

cont‘d

dir. of ext. torque

m
sp

x
m

sp
m

sp

p t
LI
Tt

LI
LFnt

I
Fnm ===

mmx tFtTH ==

F



Space Propulsion
One sided limit cycle, ct‘d

If minimum impulse bits Imin are used, the rotation limit must be 
wider than a minimum ΘL, in order to avoid thrusters being fired
in the direction of external torque. This would cause excessive
propellant consumption.

S/C rotation is accelerated by from zero speed at the extreme limit +ΘL (point 1) through an angular path
of < 2ΘL with an angular acceleration αx, generated by the external torque only. The opposite 

limit angle will be reached after an angular interval 2ΘL and a “pass” time tp (approximately equal to 
half the cycle time tcy). 

2

2
12 pxL tα=Θ

x

vL

x

L
pcy T

Itt Θ
=

Θ
== 442~

α

angular speed ωL, at the end of the cycle, at – ΘL (at point 2) is v

Lx
cyxL I

T
t

Θ
== 22/αω

Now the thrusters are firing, producing a thrusting angular 
acceleration α. They reduce this angular speed to 0 
(at the turning point 3) after a burning time of PW/2

v

W
WL I

nLFPP
2

2/. ==αω

From that follows the impulse per thruster, required to turn 
around the angular speed of the S/C, so that it moves against 
external torque up to an angle of not larger than ΘL

LvxW IT
nL

FP Θ≤
4

xv
L TI

ILn
16

2
min

22

>Θ
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forced limit cycle

A forced limit cycle occurs when thrusters are 
fired in the direction of the external torque; that 
is, when the condition

is not met

propellant consumed in a forced limit cycle is
mt

IL
RIm

spL

v
p

Θ
=

2 R [Hz] = 1/tcy = limit-cycle rate 
of the system

tm [s] = mission duration

xv
L TI

ILn
16

2
min

22

>Θ

R can only be calculated numerically from a higher order equation containing the parameters
Imin, PW, Tx, Iv, L, ΘL.
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reaction wheel maneuvres

To perform a rotational maneuver with a reaction wheel, the flywheel is accelerated 
by a motor. The spacecraft accelerates in the opposite direction.

cont’d
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vI
Tt
2

2

=Θ
A S/C can be rotated by an angle Θ by application
of a torque T for time interval t

this torque can be supplied by an accelerating flywheel;
angular acceleration αW is supplied by a motor

wwIT α=

v

WW

I
tI

2

2α
=Θ

The resulting S/C rotation angle is

tww αω =Δand the increase in wheel speed:

The S/C can be returned to its original position by applying the opposite torque to the flywheel; 
the net increase in flywheel rotational speed then is 0 (neglecting friction). Due to unbalanced torques
however, the flywheel eventually will reach its upper angular speed limit and then is not fully
available for maneuvering any more. To become maneuverable again it must be „unloaded“, i.e.
its angular speed must be brought to 0 again.

reaction wheel, cont’d

cont’d
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max,wwIH ω=total angular momentum of a fully loaded wheel is

nFLtTtH ==to unolad the wheel, a torque in the opposite direction must be
applied to it by the motor for a certain time; in order not to 
produce net rotation of the S/C, an equal and opposite
momentum must be supplied by the thrusters:

sp

ww

sp

p
LI
I

L
L

I
tnFm ω

== ..propellant consumption for unloading is

time required for unloading is
nFL
I

nFL
Ht ww max,ω

==

reaction wheel, cont’d

cont’d
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The Magellan wheel characteristics are:
maximum momentum = 27 N-m-s maximum wheel speed = 4000 rpm = 418.879 rad/s

The thruster pair to be used has the following characteristics: 
thrust = 1 N; moment arm = 2m pulsing specific impulse  1500  m/s.

engine burn time required to unload is

Example 9: Reaction Wheel Unloading

How much propellant does it take to unload one of the Magellan wheels, and 
how long does it take? (JPL Venus Mission, 1994)

the propellant mass required to unload it is

][75.6
2*1*2

27 s
nFL
Ht ===

][009.0
1500*2
27 kg

LI
Hm
sp

p ===

reaction wheel, cont’d


