

Vienna University of Technology

INSTITUT FÜR ANGEWANDTE PHYSIK Institute of Applied Physics vormals/formerly Institut für Allgemeine Physik

Wiedner Hauptstraße 8-10/E134, 1040 Wien/Vienna, Austria - Tel: +43 1 58801 13401 / Fax: +43 1 58801 13499 - E-mail: office@iap.tuwien.ac.at / http://www.iap.tuwien.ac.at

AP-SEMINAR

ANNOUNCEMENT

Date:	Tuesday, 15.3.2016
Time:	16:00 p.m.
Location:	Technische Universität Wien, Institut für Angewandte Physik, E134 yellow tower "B", 5 th floor, Sem.R. DB gelb 05 B (room number DB05L03), 1040 Wien, Wiedner Hauptstraße 8-10
Lecturer:	Choi Joong II MSc

TU Wien, IAP

Subject: Ultrathin ZrO₂: surface structure is decisive for oxide properties

Abstract: Although zirconia (ZrO₂) finds a wide range of applications in engineering, catalysis, microelectronics and solid oxide fuel cells (SOFCs), atomic-level studies of its surface structure are difficult due to its insulating nature, related to its high band gap ($E_q \approx 5$ eV). In order to overcome this limitation, ultrathin zirconia films were grown by oxidation of Zr-based alloys (Pt₃Zr [1] and Pd₃Zr [2]), and the structure of these films was studied by STM. In this talk, I will present atomically resolved STM measurements of the films and the adsorption of H₂O and atomic H as well as deposition of metals (Ag, Au, Pd, Ni, Fe) at these surfaces. Combined studies by STM and DFT reveals that the surface structure of the ultrathin oxide is a decisive factor that determines the interaction of the oxide with the molecules and the metals.

> [1] Antlanger et al., Phys. Rev. B 86, 035451 (2012) [2] Choi et al., J. Phys.: Condens. Matter 26, 225003 (2014).

All interested colleagues are welcome to this seminar lecture (45 minutes presentation followed by discussion).

M. Schmid e.h. (Seminar-Chairperson) H. Störi e.h. (LVA-Leiter)