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Algae Biofuel

Algae fuel is advanced biofuel produced by algae, small, mostly photosynthetic organisms that
consist of one to a few cells. Some are more closely related to bacteria than to plants. In the
process of photosynthesis algae convert carbon dioxide (CO;), nutrients and sunlight into
oxygen and biomass, including oil. This is achieved in a highly efficient way and it is estimated
that the production of oil from algae could be 10 to 100 times higher than second-generation
seed-oil crops, up to 200 barrels per hectare per year. Also heterotrophic (non-photosynthetic)
algae can be utilized for oil production. Fossil algae may have produced our crude oil.

The reason why algae produce lipids is still unknown. The lipid oil droplets in diatoms might
counter the weight of the dense silica shell and provide buoyancy. But during nitrate depletion
some species change from neutrally buoyant to sinking in spite of increased oil production.
Other hypotheses see the lipid pool as reserve products; but the algae also contain significant
reserves of polysaccharides. The compromise might be that oil droplets assist the long-term
survival in poor environmental conditions, while polysaccharides cover short-term energy
needs.

Most algae store oil droplets inside; so to extract the oil the algae must be dried and
centrifuged. The dry mass factor, i.e., percentage of dry biomass in relation to the fresh
biomass, is economically important. Some algae species (Botryococcus sp.) secrete their lipids
(long chain alkenes) outside their cells. It is relatively easy to separate the oil without killing the
cells. Unfortunately, oil secreting species grow much slower than other fast algae. Selective
breeding or genetic modification might overcome this limitation.

Algae react to adverse environmental conditions by producing hydrocarbons. The lipid content
increases with age, and is dependent on temperature or salinity conditions, ‘dark phases’
(diatoms kept in the dark produce more oil droplets), nitrogen depletion (increases fat
production), and drying or desiccation (increases oil production). Selected additives influence
which lipids are produced (e.g. organic mercury and cadmium).

The generation of algae biofuels is achieved in bioreactors, transparent tanks with nutrient
enriched water. CO;is added and the algae are illuminated with sunlight. In this environment an
oxygenetic photosynthetic reaction is performed by the chlorophyll containing algae. The
equation for photosynthesis is 6CO; + 6H,0 => CgH1,06 + 60;; energy required:

2870 kilojoules/mole (provided by light). Heterotrophic algae can be grown in high densities in
containers without any illumination but need energy provided as sugar (glucose).

The classical bioreactor is the ‘open pond’. It is simple but allows little control of algal
population, takes much space, and large scale production is difficult. High performance
bioreactors are closed systems that allow better control/protection of the algae. Three kinds of
bioreactors differ slightly in cultivation (intensity of sunlight energy, mass transport, size) and
production schemes (batch or continuous).

The ‘plate photo bioreactor’ consists of a series of transparent panels that are arranged to
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achieve a large illumination-surface area. This system is suitable for outdoor cultures and offers
good biomass productivity at relatively low cost. Usually the CO, and nutrient fluid are injected
at the bottom of the panels. As the system is rather flat, it requires sophisticated support
infrastructure; also temperature control and ‘wall growth’ are issues.

A ‘tubular photo bioreactor’ is a system of connected, transparent tubes with the algae-
suspended in circulating fluid. It is suitable for outdoor production and offers a large
illumination-surface area in combination with good, continuous biomass productivity at low
cost. However, constant pump circulation, which usually introduces gas and nutrients, leads to
deficiency of CO; and a high concentration of oxygen at the end of the circulation. Fouling and
some degree of wall growth result.

A ‘bubble column photo bioreactor’ is a large transparent vertical column. Gas and nutrients
are injected at the bottom. The turbulent stream created by the rising bubbles allows good gas
exchange, a high mass transfer and good mixing with low shear stress. The system is easy to
sterilize, readily tempered and reduces wall growth. The main problem is the small illumination
surface area, especially upon scale-up. Large systems might require internal illumination,
limiting outside use.

The supply of nutrients is difficult. As freshwater is precious the use of waste water might be a
very good alternative. But — as the algae are rather sensitive to contamination — the fluids must
first be processed by bacteria, through anaerobic digestion. This increases the complexity of the
system. The provision of CO, may become a major problem, as concentrated sources are
usually from fossil fuels, and therefore not sustainable (except for CO, capture). Solar panels
containing diatoms or other algae, utilizing atmospheric CO,, that secrete gasoline rather than
provide electricity or hot water, have been envisaged.

Large scale algae fuel production facilities are still in the development phase. Engineering
challenges remain, especially in scaling and dewatering technology. Power companies have
established research facilities with algae photobioreactors. The focus here lies on the scaling of
the production systems from laboratory dimensions to mass production. Another goal of the
research is to find out how efficiently algae fuel production could reduce CO, emissions and
how much biomass will be produced. Algae biomass byproduct can be sold as fertilizer, animal
feed or for pharmaceuticals to generate additional income. The emission reduction can be
certified and converted into emission credits that can be sold to industry.

The potential importance of algae in the generation of oil and hydrocarbons has been
illustrated best with an estimate by the United States Department of Energy (DOE). It states
that - if all the petroleum fuel needed in the United States were substituted by algae fuel - it
would require only about 40,000 km? of land, less than 15% of the area where corn is
harvested. Algae fuel has the potential to be the most cost-effective renewable alternative
energy source on the planet. However, investment in alternative fuels rises and falls with price
changes for crude oil. For example, the USA halted a 15 year algal fuel project in 1995.

See Also: Appliances, Photo bioreactor, Energy Efficient; Appropriate technology,
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Biotechnology, Cellulosic Biofuels, Geoengineering, Green chemistry, Nanotechnology, Green,
Passive solar, Sustainable design, Systems theory, Waste water treatment.
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Introduction

What sets humans apart from other living organisms on our planet is the use of technology.
Techrology's etymology derives from the Greek root techne, which means cratt or art, and
the root -ology conveys a discipline or field of study, We use technology to grow and pre-
pare food, clothe and house our families, distribute our resources through markets and
other financial mechanisms, transport us across the planet and bevond, and to keep us
busv and entertain us. Technology has improved the living standards and life expecrancy
of humans, albeir unevenly. However, technology has given humans the ability to alter and
rranstorm Earth in wavs previously unimaginable. We can put humans into space, turn
mountains into vallevs, and transport oil from miles below the sea. Our civilizarion’s rapa-
cious apperite for things and energy has broughr considerable disturbance ro the Earth’s
climate and ecosvstems, particularly from industrial processes and land use change for
agriculture. The evolution of technology has been anything bur green.

Yet many argue that it will be green technology that saves human civilization and the
planet as it replaces conventional technologies with more environmentally benign ones.
As the human—environment relationship evolves, it is possible that technologies can be
deploved to make that relationship more sustainable. Renewable energy promises to lessen
our impacts to the extent to which it can be deploved. More etficient resource utilization
through phenomena like industrial symbiosis and cradle-to-cradle design will lead to mate-
rials rense and recovery, and will lower rates of raw material acquisition. Smart grids, for
example, are designed to utilize energy more efficiently and encourage more energy con-
servation. It is also argued that green markets will drive change and innovation as the
environmental externalities created by the economy are internalized, and as market prices
reflect the environmental costs of doing business.

This volume’s articles explore subjects related to our understanding of the ways that
technologies coproduce human civilization and vice versa. There are explicit definitions of
particular green technologies: for example, tvpes of solar photovoltaic cells, algae biofuels,
and whirte roofs. But the volume also integrates concepts and frameworks for looking at
the interface between technology, society, and the environment. Many of these frameworks
are derived from the related fields of the history of technology, science and technology
studies, and industrial ecology. These intellectual rraditions have deep roots in Marxism
and other classical sociological, historical, and anthropological traditions.

Marx argued that technological development in capitalist society is exploitative and
alienating. But he remained commirtted to the idea that working-class struggles can regain
control of technological development to suit the purpose of the masses. More contempo-
rary scholars reject the teleology of Marx, and destabilize the notion that technologies
are motivated by, and behave in intended ways. Actor-network theory, for example, is a
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framework that emphasizes contingency and unintended consequences in rechnological
design and deplovment.

From what green rechnology has to offer, it remains difficulr to distinguish facr from
fiction, and uropian visions from the status quo. Clean coal, for example, is casr as a green
technology based on reduced carbon emissions, but how does coal impact the environment
through its life cycle? To whart extent does solar photovoltaic technology adoption simply
let people off the hook for their energy (overjconsumption? With the lower carbon emis-
sions involved with nuclear power, does this make it a green technology? Geoengineering
likewise promises to bring us out of the climate change quagmire, bur could also have
uncertain and possibly severe impacts. Nanotechnology might be green for one person’s
ecological footprint, but it might also create occupational burdens in the manufacturing
phase. Which technologies have impacts that are considerable and real? Can they be
designed to mitigate these impacts?

Other green technologies are less embroiled in controversy. Green manufacturing,
which embraces principles of product stewardship and ecological design, 1s one important
development in green technology deployment. Green chemistry, which looks to substitute
toxic chemicals for safer ones, also fits the green technology rubric, as does industrial
svmbiosis, which looks to employ principles of ecological to industrial systems. Design for
recycling practices asks manufacturers to consider the end of life of their products to
improve the ease of recycling and to avoid the issues associated with e-waste.

However, truly green technology might be something more transtormative. It would
change our behaviors and even our needs, instead of simply trading out one technology for
one with lower impacts, a notion described as ecological modernization. Taken quite lirer-
ally, the notion implies thar the modernizarion of industrial society is becoming more and
more ecologically minded, even though in pracrice it more closely resembles technological
substiturion, Likewise, a trulv green technology would be one thar is participatory in
design and implementation,

Some argue that technologies need to be small, low impact, and decentralized to be
creen. E. F Schumacher argued that “small 1s beautiful.™ These are echoes from the appro-
priate technology movement that advocates decentralized solar power, rainwater harvest-
ing svstems, biogas, and Earthships. They argue that some centralized technologies like
nuclear power have authoritarian tendencies.

There are many questions regarding green technology, What does it mean? How do we
assess its impacts? Who gets to define, develop, and benefit from green technology? We
hope this volume helps the intrigued reader think through these questions. Answers to
these questions are not entirely straightforward as technologies are entangled in politics,
culture, and the economy, in addition to the biophysical systems that support human civi-
lization, Yet embracing green technology is possible and even defensible as long as the
social and environmental dimensions are carefully evaluated. But even then, technologies
can have implications that are not by design.

Dustin Mulvaney
General Editor
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Independent Scholar

ALGAE BIOFUEL

Algae fuel 15 advanced biofuel produced by algae, small, mostly photosynthetic organisms
thar consist of one 1o a few cells, Some are more closely related to bacreria than 1o plants.
In the process of photosynthesis, algae convert carbon dioxide (CO,), nutrienrs, and sun-
light into oxvgen and biomass, including oil. This is achieved in a highly cfficient wav, and
it is estimated that the production of oil from algae could be 10 to 100 times higher than
second-generation seed-oil crops, up to 200 barrels per hectare (ha) per vear. Also, hetero-
trophic (nonphotosynthetic) algae can be utilized for oil production. Fossil algae mav have
produced our crude oil.

The reason why algae produce lipids is still unknown. The lipid oil droplets in diatoms
might counter the weight of the dense silica shell and provide buoyancy. But during nitrate
depletion, some species change from neutrally buoyant to sinking in spite of increased oil
production. Other hypotheses see the lipid pool as reserve products; but the algae also
contain significant reserves of polvsaccharides. The compromise might be chat oil droplets
assist the long-term survival in poor environmental conditions, while polysaccharides
cover short-term energy needs,

!d.U'Et J.Ig.[l.f_' store Uil. drupll:ts i.ﬂSiI:I.E.. 50 0O extract tl'll'_" [?ﬂf tl'.l.l"_" EI].E:EI.L’ must 1'“".' I:II'.'iL‘EI. II.TI[!.
centrifuged. The dry mass factor, that is, percentage of dry biomass in relation to the fresh
biomass, is economically important. Some algae species (Botrvococcus sp.} secrete their
lipids (long chain alkenes) outside their cells. It is relatively casy to separate the oil without
killing the cells. Unforrunately, oil-secreting species grow much slower than other, tast
algae. Selecrive breeding or genetic modificarion might overcome this limiration.

Algae react 1o adverse environmental conditions by producing hyvdrocarbons, The lipid
content mcreases with age, and is dependent on temperature or salinity conditions, “dark
phases™ {diatoms kept in the dark produce more oil droplets), nitrogen depletion (increases
far production), and drying or desiccation (increases oil production). Selected additives
influence which lipids are produced (c.g., organic mercury and cadmiumy).

The generanion of algae biofuels is achieved in bioreacrors, transparent ranks with
nutrient-enriched warer. CO, is added, and the algae are illuminated with sunlight, In rhis
environment an oxygenetic phorosynthetic reaction is performed by the chlorophyll con-
taining algac. The cquation for photosynthesis is 6CO, + 6H,0 => CH,0, + 60,
eneegy required: 2870 kilojoules/mole (provided by light). Heterotrophic algae can be
grown in high densities in containers without any tlumination but need energy provided
as sugar (glucose),
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The classical bioreactor is the “open pond.” It is simple bur allows litdle control of algal
population, takes much space, and large-scale production 1s difficult, High performance
bioreactors are closed systems rhar allow berter control/prorection of rhe algae, Three
kinds of bioreacrors differ slightly in cultivarion (inrensiry of sunlighr energy, mass rrans-
port, size) and production schemes (batch or continuous).

The “plate photo biorcactor™ consists of a series of transparent panels that are arranged
to achieve a large illumination-surface area. This system is suitable for outdoor cultures
and offers good biomass productivity ar relatively low cost. Usnally the CO, and nutriemt
fluid are injected ar the bottom of the panels. As the system is rather flat, it requires sophis-
ticated support infrastructure; also, temperature control and “wall growth™ are issues.

A “tubular phoro bioreactor™ is a system of connected transparent tubes with the algae
suspended in circulating fluid. It is suitable for ourdoor production and offers a large
illumination-surface area in combination with good, continuous biomass productivity au
low cost. However, constant pump circulation, which ssually introduces gas and nutrients,
leads to deficiency of CO, and a high concentration of oxvgen at the end of the arculation.
Fouling and some degree of wall growth result.

A “bubble column photo bioreactor™ is a large transparent vertical column, Gas and
nutrients are imjected at the botrom. The turbulent stream created by the rising bubbles
allows good gas exchange, a high mass transfer, and good mixing with low shear stress,
The system is easy to sterilize, readily tempered, and reduces wall growth, The main prob-
lem 1s the small dlumination-surface area, especially npon scale-up. Large svstems mught
require internal illumination, limiting ourside use.

The supply of nurrients is difficalt, As freshwarter s precious the use of wastewarer
might be a very good alternative. But—as the algae are rather sensitive to contamination—
the flusds must first be processed by bacteria through anaerobic digestion. This increases
the complexity of the system. The provision of CO, may become a major problem, as
concentrated sources are usually from fossil fuels, and therefore not sustainable (excepr for
CO, capture). Solar panels containing diatoms or other algac. utilizing atmospheric CO,,
that secrete gasoline rather than provide electricity or hot water, have been envisaged.,

Large-scale algae fuel production facilities are still in the development phase. Engineering
challenges remain, especially in scaling and dewarering technology. Power companies have
established rescarch facilities with algae photobioreactors. The focus here lies on the scaling
of the production svstems from laboratory dimensions to mass production. Another goal
of the research is to find out how efficiently algae fuel production could reduce CO, emis-
sions and how much biomass will be produced. Algae biomass by-product can be sold as
fertilizer, animal feed, or for pharmaceuticals to generate additional income. The emission
reduction can be cerrified and converted into emission credits thar can be sold ro industry.

The potential imporrance of algae in the generation of oil and hydrocarbons has been
best illustrated by an estimate from the U.S. Department of Energy (DOE). It states thae if
all the petroleum fuel needed in the United States were substituted by algae Fuel, it would
require only about 40,000 square kilometers of land, less than 15 percent of the area where
corn is harvested. Algae fuel has the potential to be the most cost—ffective renewable alrer-
native energy source on the planet. However, investment in alternarive fuels rises and falls
with price changes for crude oil. For example, the Unired Stares halted a 15-vear algal fuel
project in 1995,

See Also: Appliances, Energy Efficient; Appropriate Technology: Biotechnology; Cellulosic
]ii('ll:l.l.l'_'l"i..'. (;mfnwllﬂ'fring: (.;l_'ﬂl:‘ﬂ {..Il'lf'lni_"itr}': {.;'n'_'f."rl Nﬂ.nl‘tﬂchﬂflllﬁg.\'; Pﬂ"’lii'l."l:' "Iﬂjﬂr:_
Sustainable Design; Systems Theory; Wastewater Treatment.
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ANAEROBIC DIGESTION

Anacrobic digestion is the breakdown of organic matter via microorganisms in the absence
of oxygen, which results in the generation of carbon dioxide (CO,) and methane (CH,).
Materials high in organic content, such as municipal wastewater, livestock waste, agricul-
tural waste, and food wastes, may all undergo anaerobic digestion. The methane gas pro-
duced may be collected and used directly as a fuel for cooking or heat, or it can be used to
generate electricity. Unlike the production of methane from gas wells, anaerobic digestion
is a renewable source of energy.

Anaerobic Digestion Feedstocks

Several feedstocks exist for the anaerobic digestion process, all of which contain organic
martter, including municipal and animal wastewaters and agricultural and tood wastes.
Anaerobic digestion is frequently used in the trearment of municipal wastewarers, often in
a series of process steps that also include aerobic digestion (digestion in the presence of
oxvaen) and sedimenration. The amount of solids produced from the wastewater treat-
ment can be reduced though anaerobic digestion, which in turn reduces the costs associ-
ared with solids disposal. Similar to human waste, animal waste may also provide the
feedstock for anaerobic digestion,
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